Skip to main content
Log in

In situ formation of fluorescent silicon-containing polymer dots for alkaline phosphatase activity detection and immunoassay

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The discovery and application of analyte-triggered fluorophore generation or fluorogenic reaction are significant and beneficial to the development of novel fluorescence (FL) analysis method. In this study, for the first time, we have reported a fluorogenic reaction to prepare fluorescent silicon-containing polymer dots (Si-PDs) by simply mixing N-[3-(trimethoxysilyl)propyl]ethylenediamine (DAMO) and hydroquinone (HQ) in aqueous solution at ambient temperature. Inspired by the alkaline phosphatase (ALP)-catalyzed hydrolysis of the substrate sodium 4-hydroxyphenyl phosphate (4-HPP) into HQ and the resultant HQ-controlled intense green Si-PDs generation, we have established a straightforward ALP activity assay by innovatively employing commercially available 4-HPP as the substrate. More significantly, the specific preparation method, clear formation mechanism and excellent performance enable the Si-PDs as well as its generation process to develop facile and attractive FL immunoassay. With the help of the universal ALP-based enzyme-linked immunosorbent assay (ELISA) platform and corresponding antibody, a convenient and conceptual ALP-based fluorescent ELISA has been constructed and applied in sensing cardiac troponin I (cTnI), a well-known biomarker of acute myocardial infarction. Our research via in situ formation of fluorescent nanomaterials has great potential application in ALP activity assay, inhibitor screening, and disease diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen J, Li Y, Gu H, Xia F, Zuo X. Chem Rev, 2014, 114: 7631–7677

    CAS  Google Scholar 

  2. de la Rica R, Stevens MM. Nat Protoc, 2013, 8: 1759–1764

    PubMed  Google Scholar 

  3. Liu Y, Pan M, Wang W, Jiang Q, Wang F, Pang DW, Liu X. Anal Chem, 2019, 91: 2086–2092

    PubMed  CAS  Google Scholar 

  4. Chen Z, Wang H, Zhang Z, Chen L. Anal Chem, 2019, 91: 1254–1259

    PubMed  CAS  Google Scholar 

  5. Gao Z, Deng K, Wang XD, Miró M, Tang D. ACS Appl Mater Interfaces, 2014, 6: 18243–18250

    PubMed  CAS  Google Scholar 

  6. Millán JL. Purinergic Signalling, 2006, 2: 335–341

    PubMed  PubMed Central  Google Scholar 

  7. Fernandez NJ, Kidney BA. Vet Clin Pathol, 2007, 36: 223–233

    PubMed  Google Scholar 

  8. Tang Z, Chen H, He H, Ma C. TrAC Trends Anal Chem, 2019, 113: 32–43

    CAS  Google Scholar 

  9. Fu X, Chen L, Choo J. Anal Chem, 2017, 89: 124–137

    PubMed  CAS  Google Scholar 

  10. Ma X, He S, Qiu B, Luo F, Guo L, Lin Z. ACS Sens, 2019, 4: 782–791

    PubMed  CAS  Google Scholar 

  11. Tang L, Li J. ACS Sens, 2017, 2: 857–875

    PubMed  CAS  Google Scholar 

  12. Guo Y, Zhao W. Coordin Chem Rev, 2019, 387: 249–261

    CAS  Google Scholar 

  13. Hu XL, Wu XM, Fang X, Li ZJ, Wang GL. Biosens Bioelectron, 2016, 77: 666–672

    PubMed  CAS  Google Scholar 

  14. Sun J, Hu T, Chen C, Zhao D, Yang F, Yang X. Anal Chem, 2016, 88: 9789–9795

    PubMed  CAS  Google Scholar 

  15. Sun J, Hu T, Xu X, Wang L, Yang X. Nanoscale, 2016, 8: 16846–16850

    PubMed  CAS  Google Scholar 

  16. Yuan Y, Wu W, Xu S, Liu B. Chem Commun, 2017, 53: 5287–5290

    CAS  Google Scholar 

  17. Zhao D, Li J, Peng C, Zhu S, Sun J, Yang X. Anal Chem, 2019, 91: 2978–2984

    PubMed  CAS  Google Scholar 

  18. Chen C, Zhao J, Lu Y, Sun J, Yang X. Anal Chem, 2018, 90: 3505–3511

    PubMed  CAS  Google Scholar 

  19. Malashikhina N, Garai-Ibabe G, Pavlov V. Anal Chem, 2013, 85: 6866–6870

    PubMed  CAS  Google Scholar 

  20. Grinyte R, Barroso J, Möller M, Saa L, Pavlov V. ACS Appl Mater Interfaces, 2016, 8: 29252–29260

    PubMed  CAS  Google Scholar 

  21. Zhao J, Wang S, Lu S, Liu G, Sun J, Yang X. Anal Chem, 2019, 91: 7828–7834

    PubMed  CAS  Google Scholar 

  22. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B. Nano Res, 2015, 8: 355–381

    CAS  Google Scholar 

  23. Liu ML, Chen BB, Li CM, Huang CZ. Sci China Chem, 2019, 62: 968–981

    CAS  Google Scholar 

  24. Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W, Qu M. Microchim Acta, 2016, 184: 343–368

    Google Scholar 

  25. Liu ML, Chen BB, Li CM, Huang CZ. Green Chem, 2019, 21: 449–471

    CAS  Google Scholar 

  26. Liu Y, Wang Q, Guo S, Jia P, Shui Y, Yao S, Huang C, Zhang M, Wang L. Sens Actuat B-Chem, 2018, 275: 415–421

    CAS  Google Scholar 

  27. Han L, Liu SG, Dong JX, Liang JY, Li LJ, Li NB, Luo HQ. J Mater Chem C, 2017, 5: 10785–10793

    CAS  Google Scholar 

  28. Zhu S, Shao J, Song Y, Zhao X, Du J, Wang L, Wang H, Zhang K, Zhang J, Yang B. Nanoscale, 2015, 7: 7927–7933

    PubMed  CAS  Google Scholar 

  29. Zheng J, Wang Y, Zhang F, Yang Y, Liu X, Guo K, Wang H, Xu B. J Mater Chem C, 2017, 5: 8105–8111

    CAS  Google Scholar 

  30. Wang D, Wang X, Xu C, Ma X. Sci China Chem, 2019, 62: 430–433

    CAS  Google Scholar 

  31. Chen BB, Liu ZX, Deng WC, Zhan L, Liu ML, Huang CZ. Green Chem, 2016, 18: 5127–5132

    CAS  Google Scholar 

  32. Liu Z, Zou H, Wang N, Yang T, Peng Z, Wang J, Li N, Huang C. Sci China Chem, 2018, 61: 490–496

    CAS  Google Scholar 

  33. Zhang T, Zhu J, Zhai Y, Wang H, Bai X, Dong B, Wang H, Song H. Nanoscale, 2017, 9: 13042–13051

    PubMed  CAS  Google Scholar 

  34. Purkait TK, Iqbal M, Islam MA, Mobarok MH, Gonzalez CM, Hadidi L, Veinot JGC. J Am Chem Soc, 2016, 138: 7114–7120

    PubMed  CAS  Google Scholar 

  35. Li D, Jing P, Sun L, An Y, Shan X, Lu X, Zhou D, Han D, Shen D, Zhai Y, Qu S, Zbořil R, Rogach AL. Adv Mater, 2018, 30: 1705913

    Google Scholar 

  36. Sun S, Zhang L, Jiang K, Wu A, Lin H. Chem Mater, 2016, 28: 8659–8668

    CAS  Google Scholar 

  37. Han Y, Chen Y, Feng J, Liu J, Ma S, Chen X. Anal Chem, 2017, 89: 3001–3008

    PubMed  CAS  Google Scholar 

  38. Arslan O, Aytac Z, Uyar T. J Mater Chem C, 2017, 5: 1816–1825

    CAS  Google Scholar 

  39. Ma SD, Chen YL, Feng J, Liu JJ, Zuo XW, Chen XG. Anal Chem, 2016, 88: 10474–10481

    PubMed  CAS  Google Scholar 

  40. Geng X, Li Z, Hu Y, Liu H, Sun Y, Meng H, Wang Y, Qu L, Lin Y. ACS Appl Mater Interfaces, 2018, 10: 27979–27986

    PubMed  CAS  Google Scholar 

  41. Lu S, Sui L, Liu J, Zhu S, Chen A, Jin M, Yang B. Adv Mater, 2017, 29: 1603443

    Google Scholar 

  42. Li Y, Li W, Zhang H, Dong R, Li D, Liu Y, Huang L, Lei B. J Mater Chem B, 2019, 7: 1107–1115

    CAS  Google Scholar 

  43. Han Y, Chen Y, Liu J, Niu X, Ma Y, Ma S, Chen X. Sens Actuat B-Chem, 2018, 263: 508–516

    CAS  Google Scholar 

  44. Guo Z, Zhu X, Wang S, Lei C, Huang Y, Nie Z, Yao S. Nanoscale, 2018, 10: 19579–19585

    PubMed  CAS  Google Scholar 

  45. Han X, Li S, Peng Z, Othman AM, Leblanc R. ACS Sens, 2016, 1: 106–114

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFA0201301), the National Natural Science Foundation of China (21435005, 21627808, 21974132), the Youth Innovation Promotion Association, CAS (2018258) and Open Project of State Key Laboratory of Supramolecular Structure and Materials (sklssm2019023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Sun or Xiurong Yang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

11426_2019_9690_MOESM1_ESM.doc

In situ formation of fluorescent silicon-containing polymer dots for alkaline phosphatase activity detection and immunoassay

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Zhao, J., Yan, M. et al. In situ formation of fluorescent silicon-containing polymer dots for alkaline phosphatase activity detection and immunoassay. Sci. China Chem. 63, 554–560 (2020). https://doi.org/10.1007/s11426-019-9690-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9690-7

Keywords

Navigation