Skip to main content
Log in

A novel alkaline phosphatase activity sensing strategy combining enhanced peroxidase-mimetic feature of sulfuration-engineered CoOx with electrostatic aggregation

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Given alkaline phosphatase (ALP) takes part in the phosphorylation/dephosphorylation processes in the body, its activity is universally taken as an important indicator of many diseases, and thus developing reliable and efficient methods for ALP activity determination becomes quite important. Here, we propose a new sensing strategy for ALP activity by integrating the improved peroxidase-mimicking catalysis of sulfuration-engineered CoOx with the hexametaphosphate ion (HMPi)–mediated electrostatic aggregation. After sulfuration engineering, the CoOx composite coming from the pyrolysis of ZIF-67 exhibits enhanced peroxidase-mimetic catalytic ability to oxidize 3,3′,5,5′-tetramethylbenzidine (TMB) to its oxide TMBox, offering a remarkable color change from colorless to mazarine; with the presence of HMPi, the rapid electrostatic assembly of negatively charged HMPi and positively charged TMBox leads to the aggregation of the latter, resulting in a color fading phenomenon; when ALP is added in advance to hydrolyze the HMPi mediator, the aggregation procedure is significantly suppressed, and such that the solution color can be recovered. Based on this principle, efficient determination of ALP activity was gained, giving a wide detection scope from 0.8 to 320 U/L and a detection limit as low as 0.38 U/L. Reliable analysis of the target in serum samples was also achieved, verifying the feasibility and practicability of our strategy in measuring ALP activity for clinical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McComb RB, Bowers GN, Posen S. Alkaline phosphatase. Springer Science & Business Media; 2013.

  2. Sharland DE, Overstall PW. Alkaline phosphatase: changes in serum levels after a fracture. Br Med J. 1978;1:620.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Keshaviah A, Dellapasqua S, Rotmensz N, Lindtner J, Crivellari D, Collins J, et al. CA15-3 and alkaline phosphatase as predictors for breast cancer recurrence: a combined analysis of seven international breast cancer study group trials. Ann Oncol. 2007;18:701–8.

    CAS  PubMed  Google Scholar 

  4. Kendall MJ, Cockel R, Becker J, Hawkins CF. Raised serum alkaline phosphatase in rheumatoid disease. An index of liver dysfunction? Ann Rheum Dis. 1970;29:537–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Maxwell DB, Fisher EA, Ross-Clunis HA, Estep HL. Serum alkaline phosphatase in diabetes mellitus. J Am Coll Nutr. 1986;5:55–9.

    CAS  PubMed  Google Scholar 

  6. Li SJ, Li CY, Li YF, Fei JJ, Wu P, Yang B, et al. Facile and sensitive near-infrared fluorescence probe for the detection of endogenous alkaline phosphatase activity in vivo. Anal Chem. 2017;89:6854–60.

    CAS  PubMed  Google Scholar 

  7. Zhang HM, Xu CL, Liu J, Li XH, Guo L, Li XM. An enzyme-activatable probe with a self-immolative linker for rapid and sensitive alkaline phosphatase detection and cell imaging through a cascade reaction. Chem Commun. 2015;51:7031–4.

    CAS  Google Scholar 

  8. Liang J, Kwok RTK, Shi HB, Tang BZ, Liu B. Fluorescent light-up probe with aggregation-induced emission characteristics for alkaline phosphatase sensing and activity study. ACS Appl Mater Interfaces. 2013;5:8784–9.

    CAS  PubMed  Google Scholar 

  9. Ma JL, Yin BC, Wu X, Ye BC. Copper-mediated DNA-scaffolded silver nanocluster on─off switch for detection of pyrophosphate and alkaline phosphatase. Anal Chem. 2016;88:9219–25.

    CAS  PubMed  Google Scholar 

  10. Li JY, Si L, Bao JC, Wang ZY, Dai ZH. Fluorescence regulation of poly(thymine)-templated copper nanoparticles via an enzyme-triggered reaction toward sensitive and selective detection of alkaline phosphatase. Anal Chem. 2017;89:3681–6.

    CAS  PubMed  Google Scholar 

  11. Xiao T, Sun J, Zhao JH, Wang S, Liu GY, Yang XR. FRET effect between fluorescent polydopamine nanoparticles and MnO2 nanosheets and its application for sensitive sensing of alkaline phosphatase. ACS Appl Mater Interfaces. 2018;10:6560–9.

    CAS  PubMed  Google Scholar 

  12. Zhang L, Hong MF, Chu ZJ, Xu H, Wang SP, Zhao XJ, et al. A new copper mediated on─off assay for alkaline phosphatase detection based on MoOx quantum dots. Microchem J. 2018;141:170–5.

    CAS  Google Scholar 

  13. Xu AZ, Zhang L, Zeng HH, Liang RP, Qiu JD. Fluorometric determination of the activity of alkaline phosphatase based on the competitive binding of gold nanoparticles and pyrophosphate to CePO4:Tb nanorods. Microchim Acta. 2018;185:288.

    Google Scholar 

  14. Wang XY, Liu ZJ, Zhao WY, Sun JF, Qian B, Wang XW, et al. A novel switchable fluorescent sensor for facile and highly sensitive detection of alkaline phosphatase activity in a water environment with gold/silver nanoclusters. Anal Bioanal Chem. 2019;411:1009–17.

    CAS  PubMed  Google Scholar 

  15. Sun J, Zhao JH, Bao XF, Wang QF, Yang XR. Alkaline phosphatase assay based on the chromogenic interaction of diethanolamine with 4-aminophenol. Anal Chem. 2018;90:6339–45.

    CAS  PubMed  Google Scholar 

  16. Wang LJ, Ye K, Pan JM, Song HW, Niu XH. A novel alkaline phosphatase assay based on the specific chromogenic interaction between Fe3+ and ascorbic acid 2-phosphate. Anal Methods. 2019;11:2374–7.

    CAS  Google Scholar 

  17. Hu Q, Zhou BJ, Dang PY, Li LZ, Kong JM, Zhang XJ. Facile colorimetric assay of alkaline phosphatase activity using Fe(II)-phenanthroline reporter. Anal Chim Acta. 2017;950:170–7.

    CAS  PubMed  Google Scholar 

  18. Shi DM, Sun Y, Lin L, Shi CJ, Wang GF, Zhang XJ. Naked-eye sensitive detection of alkaline phosphatase (ALP) and pyrophosphate (PPi) based on a horseradish peroxidase catalytic colorimetric system with Cu(II). Analyst. 2016;141:5549–54.

    CAS  PubMed  Google Scholar 

  19. Li CM, Zhen SJ, Wang J, Li YF, Huang CZ. A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Biosens Bioelectron. 2013;43:366–71.

    CAS  PubMed  Google Scholar 

  20. Liu Q, Li HX, Jin R, Li N, Yan X, Su XG. Ultrasensitive detection alkaline phosphatase activity using 3-aminophenylboronic acid functionalized gold nanoclusters. Sens Actuators B Chem. 2019;281:175–81.

    CAS  Google Scholar 

  21. Hayat A, Bulbul G, Andreescu S. Probing phosphatase activity using redox active nanoparticles: a novel colorimetric approach for the detection of enzyme activity. Biosens Bioelectron. 2014;56:334–9.

    CAS  PubMed  Google Scholar 

  22. Tang ZW, Zhang HF, Ma CB, Gu P, Zhang GH, Wu KF, et al. Colorimetric determination of the activity of alkaline phosphatase based on the use of Cu(II)-modulated G-quadruplex-based DNAzymes. Microchim Acta. 2018;185:109.

    Google Scholar 

  23. Wang JW, Ni PJ, Chen CX, Jiang YY, Zhang CH, Wang B, et al. Colorimetric determination of the activity of alkaline phosphatase by exploiting the oxidase-like activity of palladium cube@CeO2 core-shell nanoparticles. Microchim Acta. 2020;187:115.

    CAS  Google Scholar 

  24. Huang QW, He C, Zhang JL, Li W, Fu Y. Unlocking the hidden talent of DNA: unexpected catalytic activity for colorimetric assay of alkaline phosphatase. Anal Chim Acta. 2019;1055:98–105.

    CAS  PubMed  Google Scholar 

  25. Goggins S, Naz C, Marsh BJ, Frost CG. Ratiometric electrochemical detection of alkaline phosphatase. Chem Commun. 2015;51:561–4.

    CAS  Google Scholar 

  26. Ito S, Yamazaki S, Kano K, Ikeda T. Highly sensitive electrochemical detection of alkaline phosphatase. Anal Chim Acta. 2000;424:57–63.

    CAS  Google Scholar 

  27. Serra B, Morales MD, Reviejo AJ, Hall EH, Pingarrón JM. Rapid and highly sensitive electrochemical determination of alkaline phosphatase using a composite tyrosinase biosensor. Anal Biochem. 2005;336:289–94.

    CAS  PubMed  Google Scholar 

  28. Bowers GN, McComb RB. A continuous spectrophotometric method for measuring the activity of serum alkaline phosphatase. Clin Chem. 1966;12:70–89.

    CAS  PubMed  Google Scholar 

  29. Niu XH, Ye K, Wang LJ, Lin YH, Du D. A review on emerging principles and strategies for colorimetric and fluorescent detection of alkaline phosphatase activity. Anal Chim Acta. 2019;1086:29–45.

    CAS  PubMed  Google Scholar 

  30. Tang ZW, Chen HT, He HL, Ma CB. Assays for alkaline phosphatase activity: progress and prospects. TrAC Trends Anal Chem. 2019;113:32–43.

    CAS  Google Scholar 

  31. Li X, Wang LJ, Du D, Ni L, Pan JM, Niu XH. Emerging applications of nanozymes in environmental analysis: opportunities and trends. TrAC Trends Anal Chem. 2019;120:115653.

    CAS  Google Scholar 

  32. Wang QQ, Wei H, Zhang ZQ, Wang EK, Dong SJ. Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal Chem. 2018;105:218–24.

    CAS  Google Scholar 

  33. Wu JJX, Wang XY, Wang Q, Lou ZP, Li SR, Zhu YY, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48:1004–76.

    CAS  PubMed  Google Scholar 

  34. Liang MM, Yan XY. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52:2190–200.

    CAS  PubMed  Google Scholar 

  35. Huang YY, Ren JS, Qu XG. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119:4357–412.

    CAS  PubMed  Google Scholar 

  36. Wei H, Wang EK. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem. 2008;80:2250–4.

    CAS  PubMed  Google Scholar 

  37. Niu XH, Cheng N, Ruan XF, Du D, Lin YH. Review─Nanozyme-based immunosensors and immunoassays: recent developments and future trends. J Electrochem Soc. 2020;167:037508.

    CAS  Google Scholar 

  38. Liang MM, Fan KL, Pan Y, Jiang H, Wang F, Yang DL, et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal Chem. 2013;85:308–12.

    CAS  PubMed  Google Scholar 

  39. He YF, Qi F, Niu XH, Zhang WC, Zhang XF, Pan JM. Uricase-free on-demand colorimetric biosensing of uric acid enabled by integrated CoP nanosheet arrays as a monolithic peroxidase mimic. Anal Chim Acta. 2018;1021:113–20.

    CAS  PubMed  Google Scholar 

  40. Zhang WC, Niu XH, Meng SC, Li X, He YF, Pan JM, et al. Histidine-mediated tunable peroxidase-like activity of nanosized Pd for photometric sensing of Ag+. Sens Actuators B Chem. 2018;273:400–7.

    CAS  Google Scholar 

  41. Niu XH, He YF, Li X, Zhao HL, Pan JM, Qiu FX, et al. A peroxidase-mimicking nanosensor with Hg2+-triggered enzymatic activity of cysteine-decorated ferromagnetic particles for ultrasensitive Hg2+ detection in environmental and biological fluids. Sens Actuators B Chem. 2019;281:445–52.

    CAS  Google Scholar 

  42. Qin L, Wang XY, Li YF, Wei H. 2D-metal-organic-framework-nanozyme sensor arrays for probing phosphates and their enzymatic hydrolysis. Anal Chem. 2018;90:9983–9.

    CAS  PubMed  Google Scholar 

  43. Chen YJ, Cao HY, Shi WB, Liu H, Huang YM. Fe-Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing. Chem Commun. 2013;49:5013–5.

    CAS  Google Scholar 

  44. Long YJ, Li YF, Liu Y, Zheng JJ, Tang J, Huang CZ. Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun. 2011;47:11939–41.

    CAS  Google Scholar 

  45. Zhu NF, Gu LT, Wang J, Li XS, Liang GX, Zhou JH, et al. Novel and sensitive chemiluminescence sensors based on 2D-MOF nanosheets for one-step detection of glucose in human urine. J Phys Chem C. 2019;123:9388–93.

    CAS  Google Scholar 

  46. Song HW, Wang HY, Li X, Peng YX, Pan JM, Niu XH. Sensitive and selective colorimetric detection of alkaline phosphatase activity based on phosphate anion-quenched oxidase-mimicking activity of Ce(IV) ions. Anal Chim Acta. 2018;1044:154–61.

    CAS  PubMed  Google Scholar 

  47. Ye K, Wang LJ, Song HW, Li X, Niu XH. Bifunctional MIL-53(Fe) with pyrophosphate-mediated peroxidase-like activity and oxidation-stimulated fluorescence switching for alkaline phosphatase detection. J Mater Chem B. 2019;7:4794–800.

    CAS  PubMed  Google Scholar 

  48. Niu XH, Ye K, Li ZB, Zhao HL, Wang LJ, Pan JM, et al. Pyrophosphate-mediated on─off─on oxidase-like activity switching of nanosized MnFe2O4 for alkaline phosphatase sensing. J Anal Test. 2019;3:228–37.

    Google Scholar 

  49. Wang CH, Gao J, Cao YL, Tan HL. Colorimetric logic gate for alkaline phosphatase based on copper(II)-based metal-organic frameworks with peroxidase-like activity. Anal Chim Acta. 2018;1004:74–81.

    CAS  PubMed  Google Scholar 

  50. Song HW, Ye K, Peng YX, Wang LJ, Niu XH. Facile colorimetric detection of alkaline phosphatase activity based on the target-induced valence state regulation of oxidase-mimicking Ce-based nanorods. J Mater Chem B. 2019;7:5834–41.

    CAS  PubMed  Google Scholar 

  51. Song HW, Li ZB, Peng YX, Li X, Xu XC, Pan JM, et al. Enzyme-triggered in situ formation of Ag nanoparticles with oxidase-mimicking activity for amplified detection of alkaline phosphatase activity. Analyst. 2019;144:2416–22.

    CAS  PubMed  Google Scholar 

  52. Wang LJ, Ye K, Pan JM, Song HW, Li X, Niu XH. A catalytic reaction-based colorimetric assay of alkaline phosphatase activity based on oxidase-like MnO2 microspheres. Anal Methods. 2019;11:5472–7.

    CAS  Google Scholar 

  53. Liu SG, Han L, Li N, Xiao N, Ju YJ, Li NB, et al. A fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity via destroying oxidase-like CoOOH nanoflakes. J Mater Chem B. 2018;6:2843–50.

    CAS  PubMed  Google Scholar 

  54. Liu SG, Han L, Li N, Fan YZ, Yang YZ, Li NB, et al. A ratiometric fluorescent strategy for alkaline phosphatase activity assay based on g-C3N4/CoOOH nanohybrid via target-triggered competitive redox reaction. Sens Actuators B Chem. 2019;283:515–23.

    CAS  Google Scholar 

  55. Jin LY, Dong YM, Wu XM, Cao GX, Wang GL. Versatile and amplified biosensing through enzymatic cascade reaction by coupling alkaline phosphatase in situ generation of photoresponsive nanozyme. Anal Chem. 2015;87:10429–36.

    CAS  PubMed  Google Scholar 

  56. Tian FY, Zhou J, Ma J, Liu SY, Jiao BN, He Y. MnO2 nanosheets as oxidase mimics for colorimetric detection of alkaline phosphatase activity. Microchim Acta. 2019;186:408.

    Google Scholar 

  57. Gao ZQ, Deng KC, Wang XD, Miró M, Tang DP. High-resolution colorimetric assay for rapid visual readout of phosphatase activity based on gold/silver core/shell nanorod. ACS Appl Mater Interfaces. 2014;6:18243–50.

    CAS  PubMed  Google Scholar 

  58. Song HW, Li X, He YF, Peng YX, Pan JM, Niu XH, et al. Colorimetric evaluation of the hydroxyl radical scavenging ability of antioxidants using carbon-confined CoOx as a highly active peroxidase mimic. Microchim Acta. 2019;186:354.

    Google Scholar 

  59. Guo XM, Qian C, Shi RH, Zhang W, Xu F, Qian SL, et al. Biomorphic Co-N-C/CoOx composite derived from natural chloroplasts as efficient electrocatalyst for oxygen reduction reaction. Small. 2019;15:18004855.

    Google Scholar 

  60. Huang M, Mi K, Zhang JH, Liu HL, Yu TT, Yuan AH, et al. MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J Mater Chem A. 2017;5:266–74.

    CAS  Google Scholar 

  61. Bao SJ, Li YB, Li CM, Bao QL, Lu Q, Guo J. Shape evolution and magnetic properties of cobalt sulfide. Cryst Growth Des. 2008;8:3745–9.

    CAS  Google Scholar 

  62. Ray RS, Sarma B, Jurovitzki AL, Misra M. Fabrication and characterization of titania nanotube/cobalt sulfide supercapacitor electrode in various electrolytes. Chem Eng J. 2015;260:671–83.

    CAS  Google Scholar 

  63. Chen TM, Wu XJ, Wang JX, Yang GW. WSe2 few layers with enzyme mimic activity for high-sensitive and high-selective visual detection of glucose. Nanoscale. 2017;9:11806–13.

    CAS  PubMed  Google Scholar 

  64. Niu XH, He YF, Pan JM, Li X, Qiu FX, Yan YS, et al. Uncapped nanobranch-based CuS clews used as an efficient peroxidase mimic enable the visual detection of hydrogen peroxide and glucose with fast response. Anal Chim Acta. 2016;947:42–9.

    CAS  PubMed  Google Scholar 

  65. Lu YW, Zhang XD, Mao XX, Huang YM. Engineering FeCo alloy@N-doped carbon layers by directly pyrolyzing Prussian blue analogue: new peroxidase mimetic for chemiluminescence glucose biosensing. J Mater Chem B. 2019;7:4661–8.

    CAS  PubMed  Google Scholar 

  66. Dong WF, Zhuang YX, Li SQ, Zhang XD, Chai HX, Huang YM. High peroxidase-like activity of metallic cobalt nanoparticles encapsulated in metal-organic frameworks derived carbon for biosensing. Sens Actuators B Chem. 2018;255:2050–7.

    CAS  Google Scholar 

  67. Xu YQ, Li BH, Xiao LL, Ouyang J, Sun SG, Pang Y. A colorimetric and near-infrared fluorescent probe with high sensitivity and selectivity for acid phosphatase and inhibitor screening. Chem Commun. 2014;50:8677–80.

    CAS  Google Scholar 

  68. Na WD, Hu TY, Su XG. Sensitive detection of acid phosphatase based on graphene quantum dots nanoassembly. Analyst. 2016;141:4926–32.

    CAS  PubMed  Google Scholar 

  69. Zhu ZM, Lin XY, Wu LN, Zhao CF, Li SG, Liu AL, et al. Nitrogen-doped carbon dots as a ratiometric fluorescent probe for determination of the activity of acid phosphatase, for inhibitor screening, and for intracellular imaging. Microchim Acta. 2019;186:558.

    Google Scholar 

Download references

Funding

The financial supports from the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX18_2341), the National Natural Science Foundation of China (Grant No. 21605061), and the Social Development Fund of Zhenjiang City (Grant No. SH2018011) are received. Xiangheng Niu received the Cultivation Project for Outstanding Young Teachers of Jiangsu University (Grant No. 4111310004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangheng Niu or Yinxian Peng.

Ethics declarations

There are no conflicts of interest to declare. No human participants and/or animals are involved. All the co-authors have read and approved the work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 856 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Niu, X., Ye, K. et al. A novel alkaline phosphatase activity sensing strategy combining enhanced peroxidase-mimetic feature of sulfuration-engineered CoOx with electrostatic aggregation. Anal Bioanal Chem 412, 5551–5561 (2020). https://doi.org/10.1007/s00216-020-02815-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02815-1

Keywords

Navigation