Skip to main content
Log in

Quinine-derived thiourea promoted enantioselective Michael addition reactions of 3-substituted phthalides to maleimides

  • Articles
  • SPECIAL ISSUE: Dedicated to the 100th Anniversary of Nankai University
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A highly diastereoselective and enantioselective Michael addition/desymmetrization reaction of maleimides with prochiral 3- substituted phthalides catalyzed by quinine-derived bifunctional thiourea was realized. A broad range of the 3,3′-disubstituted phthalides bearing vicinal quaternary-tertiary stereogenic centers were synthesized in moderate to good yields (up to 96%) with high diastereoselectivities (up to >19:1 dr) and enantioselectivities (up to 96:4 er).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck JJ, Chou SC. J Nat Prod, 2007, 70: 891–900

    Article  CAS  PubMed  Google Scholar 

  2. Tymiak AA, Aklonis C, Bolgar MS, Kahle AD, Kirsch DR, O’Sullivan J, Porubcan MA, Principe P, Trejo WH. J Org Chem, 1993, 58: 535–537

    Article  CAS  Google Scholar 

  3. Konno F, Ishikawa T, Kawahata M, Yamaguchi K. J Org Chem, 2006, 71: 9818–9823

    Article  CAS  PubMed  Google Scholar 

  4. Baba Y, Ogoshi Y, Hirai G, Yanagisawa T, Nagamatsu K, Mayumi S, Hashimoto Y, Sodeoka M. Bioorg Med Chem Lett, 2004, 14: 2963–2967

    Article  CAS  PubMed  Google Scholar 

  5. Abdel-Mageed WM, Milne BF, Wagner M, Schumacher M, Sandor P, Pathom-Aree W, Goodfellow M, Bull AT, Horikoshi K, Ebel R, Diederich M, Fiedler HP, Jaspars M. Org Biomol Chem, 2010, 8: 2352–2362

    Article  CAS  PubMed  Google Scholar 

  6. Karmakar R, Pahari P, Mal D. Chem Rev, 2014, 114: 6213–6284

    Article  CAS  PubMed  Google Scholar 

  7. Trost BM, Weiss AH. Angew Chem Int Ed, 2007, 46: 7664–7666

    Article  CAS  Google Scholar 

  8. Chang HT, Jeganmohan M, Cheng CH. Chem Eur J, 2007, 13: 4356–4363

    Article  CAS  PubMed  Google Scholar 

  9. Zhang B, Xu MH, Lin GQ. Org Lett, 2009, 11: 4712–4715

    Article  CAS  PubMed  Google Scholar 

  10. Phan DHT, Kim B, Dong VM. J Am Chem Soc, 2009, 131: 15608–15609

    Article  CAS  PubMed  Google Scholar 

  11. Yang J, Yoshikai N. J Am Chem Soc, 2014, 136: 16748–16751

    Article  CAS  PubMed  Google Scholar 

  12. Cabrera JM, Tauber J, Krische MJ. Angew Chem Int Ed, 2018, 57: 1390–1393

    Article  CAS  Google Scholar 

  13. Choi PJ, Sperry J, Brimble MA. J Org Chem, 2010, 75: 7388–7392

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H, Zhang S, Liu L, Luo G, Duan W, Wang W. J Org Chem, 2010, 75: 368–374

    Article  CAS  PubMed  Google Scholar 

  15. Reddy RS, Kiran INC, Sudalai A. Org Biomol Chem, 2012, 10: 3655–3661

    Article  CAS  PubMed  Google Scholar 

  16. Youn SW, Song HS, Park JH. Org Lett, 2014, 16: 1028–1031

    Article  CAS  PubMed  Google Scholar 

  17. Di Mola A, Scorzelli F, Monaco G, Palombi L, Massa A. RSC Adv, 2016, 6: 60780–60786

    Article  CAS  Google Scholar 

  18. Yeh CH, Lin YC, Mannathan S, Hung K, Cheng CH. Adv Synth Catal, 2014, 356: 831–842

    Article  CAS  Google Scholar 

  19. Li Y, Li X, Cheng JP. Adv Synth Catal, 2014, 356: 1172–1198

    Article  CAS  Google Scholar 

  20. Han X, Dong C, Zhou HB. Adv Synth Catal, 2014, 356: 1275–1280

    Article  CAS  Google Scholar 

  21. Sicignano M, Dentoni Litta A, Schettini R, De Riccardis F, Pierri G, Tedesco C, Izzo I, Della Sala G. Org Lett, 2017, 19: 4383–4386

    Article  CAS  PubMed  Google Scholar 

  22. Xu C, Shen Q. Org Lett, 2015, 17: 4561–4563

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka K, Osaka T, Noguchi K, Hirano M. Org Lett, 2007, 9: 1307–1310

    Article  CAS  PubMed  Google Scholar 

  24. Liu K, Teng HL, Yao L, Tao HY, Wang CJ. Org Lett, 2013, 15: 2250–2253

    Article  CAS  PubMed  Google Scholar 

  25. Parmar D, Maji MS, Rueping M. Chem Eur J, 2014, 20: 83–86

    Article  CAS  PubMed  Google Scholar 

  26. Egami H, Asada J, Sato K, Hashizume D, Kawato Y, Hamashima Y. J Am Chem Soc, 2015, 137: 10132–10135

    Article  CAS  PubMed  Google Scholar 

  27. Tsogoeva SB. Eur J Org Chem, 2007, 2007(11): 1701–1716

    Article  CAS  Google Scholar 

  28. Harutyunyan SR, den Hartog T, Geurts K, Minnaard AJ, Feringa BL. Chem Rev, 2008, 108: 2824–2852

    Article  CAS  PubMed  Google Scholar 

  29. Alexakis A, Backvall JE, Krause N, Pamies O, Dieguez M. Chem Rev, 2008, 108: 2796–2823

    Article  CAS  PubMed  Google Scholar 

  30. Bertelsen S, Jørgensen KA. Chem Soc Rev, 2009, 38: 2178–2189

    Article  CAS  PubMed  Google Scholar 

  31. Taylor MS, Jacobsen EN. J Am Chem Soc, 2003, 125: 11204–11205

    Article  CAS  PubMed  Google Scholar 

  32. Li H, Wang Y, Tang L, Wu F, Liu X, Guo C, Foxman BM, Deng L. Angew Chem Int Ed, 2005, 44: 105–108

    Article  CAS  Google Scholar 

  33. Bella M, Gasperi T. Synthesis, 2009, 2009(10): 1583–1614

    Article  CAS  Google Scholar 

  34. Li X, Hu S, Xi Z, Zhang L, Luo S, Cheng JP. J Org Chem, 2010, 75: 8697–8700

    Article  CAS  PubMed  Google Scholar 

  35. Luo J, Wang H, Zhong F, Kwiatkowski J, Xu LW, Lu Y. Chem Commun, 2012, 48: 4707–4709

    Article  CAS  Google Scholar 

  36. Luo J, Wang H, Zhong F, Kwiatkowski J, Xu LW, Lu Y. Chem Commun, 2013, 49: 5775–5777

    Article  CAS  Google Scholar 

  37. Luo J, Jiang C, Wang H, Xu LW, Lu Y. Tetrahedron Lett, 2013, 54: 5261–5265

    Article  CAS  Google Scholar 

  38. Zhong F, Luo J, Chen GY, Dou X, Lu Y. J Am Chem Soc, 2012, 134: 10222–10227

    Article  CAS  PubMed  Google Scholar 

  39. Zhuang Z, Hu ZP, Liao WW. Org Lett, 2014, 16: 3380–3383

    Article  CAS  PubMed  Google Scholar 

  40. Hu ZP, Zhuang Z, Liao WW. J Org Chem, 2015, 80: 4627–4637

    Article  CAS  PubMed  Google Scholar 

  41. Dong N, Li X, Wang F, Cheng JP. Org Lett, 2013, 15: 4896–4899

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Lin MH, Han Y, Wang F, Cheng JP. Org Lett, 2014, 16: 114–117

    Article  CAS  PubMed  Google Scholar 

  43. Yang C, Liu Y, Yang JD, Li YH, Li X, Cheng JP. Org Lett, 2016, 18: 1036–1039

    Article  CAS  PubMed  Google Scholar 

  44. Yang C, Zhang EG, Li X, Cheng JP. Angew Chem Int Ed, 2016, 55: 6506–6510

    Article  CAS  Google Scholar 

  45. CCDC 1873093 contains the supplementary crystallographic data for compound 3h

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21390400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, X. & Cheng, JP. Quinine-derived thiourea promoted enantioselective Michael addition reactions of 3-substituted phthalides to maleimides. Sci. China Chem. 62, 649–652 (2019). https://doi.org/10.1007/s11426-018-9393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9393-2

Keywords

Navigation