Skip to main content
Log in

Sequential co-immobilization of β-glucosidase and yeast cells on single polymer support for bioethanol production

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Co-immobilization of enzymes and microorganism is an effective way to enable cells to use nonmetabolizable substrates and accelerate reaction rate of overall process. Herein, a facile strategy to separately co-immobilize β-glucosidase (BG) and yeast cells on non-woven fabrics was developed. The BG was firstly in situ entrapped into poly(ethylene glycol) (PEG) network grafted on non-woven fabrics by visible light induced living/controlled graft polymerization. Then re-graft polymerization was performed on the as-formed BG loaded layer by taking advantage of living-grafting polymerization on its surface to in situ encapsulate yeast cells into the second PEG network layer. This layered structure of co-immobilization avoided possible interference between enzyme and cells. Viability assay of yeast cells demonstrated that most of cells were viable after immobilization. While immobilized BG showed decreased Vmax compared to free BG, indicating that entrapping BG into inner PEG network layer restricted its accessibility with substrates. This co-immobilization sheet could successfully convert cellobiose to ethanol and a maximum of 98.6% bioethanol yield can be obtained after 48 h of simultaneous saccharification and fermentation (SSF). The co-immobilization sheet showed excellent reusability and could still reach more than 60% of original ethanol yield after reusing for 7 batches. Compared with the mixed co-immobilization, the sequential layered immobilization in this system showed better stability and higher ethanol yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cannella D, Jørgensen H. Biotechnol Bioeng, 2014, 111: 59–68

    Article  CAS  PubMed  Google Scholar 

  2. Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K. Biotech Adv, 2015, 33: 1091–1107

    Article  CAS  Google Scholar 

  3. Sarkar N, Ghosh SK, Bannerjee S, Aikat K. Renew Energy, 2012, 37: 19–27

    Article  CAS  Google Scholar 

  4. Meng X, Ragauskas AJ. Curr Opin Biotech, 2014, 27: 150–158

    Article  CAS  PubMed  Google Scholar 

  5. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Bioresource Tech, 2010, 101: 4851–4861

    Article  CAS  Google Scholar 

  6. Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Chem Rev, 2015, 115: 1308–1448

    Article  CAS  PubMed  Google Scholar 

  7. Holtzapple M, Cognata M, Shu Y, Hendrickson C. Biotechnol Bioeng, 1990, 36: 275–287

    Article  CAS  PubMed  Google Scholar 

  8. Dekker RFH, Wallis AFA. Biotechnol Bioeng, 1983, 25: 3027–3048

    Article  CAS  PubMed  Google Scholar 

  9. Chauve M, Mathis H, Huc D, Casanave D, Monot F, Lopes Ferreira N. Biotechnol Biofuels, 2010, 3: 3–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Teugjas H, Väljamäe P. Biotechnol Biofuels, 2013, 6: 104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Castro RCA, Roberto IC. Appl Biochem Biotechnol, 2014, 172: 1553–1564

    Article  CAS  PubMed  Google Scholar 

  12. Cao LC, Wang ZJ, Ren GH, Kong W, Li L, Xie W, Liu YH. Biotechnol Biofuels, 2015, 8: 202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, Filho EXF, Ezeji T. Trends Biochem Sci, 2016, 41: 633–645

    Article  CAS  PubMed  Google Scholar 

  14. Goldemberg J. Biotech Biofuels, 2008, 1: 6

    Article  CAS  Google Scholar 

  15. Kossatz HL, Rose SH, Viljoen-Bloom M, van Zyl WH. Process Biochem, 2016, 53: 10–16

    Article  CAS  Google Scholar 

  16. Saha BC, Nichols NN, Qureshi N, Kennedy GJ, Iten LB, Cotta MA. Bioresour Tech, 2015, 175: 17–22

    Article  CAS  Google Scholar 

  17. de Barros EM, Carvalho VM, Rodrigues THS, Rocha MVP, Gonçalves LRB. Chem Eng J, 2016, 307: 939–947

    Article  CAS  Google Scholar 

  18. Brethauer S, Robert Lawrence S, Michael Hans-Peter S. Bioresource Tech, 2017, 237: 135–138

    Article  CAS  Google Scholar 

  19. Tran CTH, Nosworthy N, Bilek MMM, McKenzie DR. Biomass Bioenergy, 2015, 81: 234–241

    Article  CAS  Google Scholar 

  20. Watanabe I, Miyata N, Ando A, Shiroma R, Tokuyasu K, Nakamura T. Bioresource Tech, 2012, 123: 695–698

    Article  CAS  Google Scholar 

  21. Wirawan F, Cheng CL, Kao WC, Lee DJ, Chang JS. Appl Energy, 2012, 100: 19–26

    Article  CAS  Google Scholar 

  22. Choi IS, Lee YG, Khanal SK, Park BJ, Bae HJ. Appl Energy, 2015, 140: 65–74

    Article  CAS  Google Scholar 

  23. Karagöz P, Özkan M. Bioresource Tech, 2014, 158: 286–293

    Article  CAS  Google Scholar 

  24. Chen CC, Wu CH, Wu JJ, Chiu CC, Wong CH, Tsai ML, Lin HTV. Process Biochem, 2015, 50: 1509–1515

    Article  CAS  Google Scholar 

  25. Zhou Y, Pan S, Wei X, Wang L, Liu Y. Bioresources, 2013, 8: 2605–2619

    Google Scholar 

  26. Martino A, Pifferi PG, Spagna G. Process Biochem, 1996, 31: 287–293

    Article  CAS  Google Scholar 

  27. Hahn-Hägerdal B. Biotechnol Bioeng, 1984, 26: 771–774

    Article  PubMed  Google Scholar 

  28. Grosová Z, Rosenberg M, Gdovin M, Sláviková L, Rebroš M. Food Chem, 2009, 116: 96–100

    Article  CAS  Google Scholar 

  29. Staniszewski M, Kujawski W, Lewandowska M. J Food Eng, 2009, 91: 240–249

    Article  CAS  Google Scholar 

  30. Giordano RLC, Trovati J, Schmidell W. Appl Biochem Biotechnol, 2008, 147: 47–61

    Article  CAS  PubMed  Google Scholar 

  31. Bandaru VVR, Somalanka SR, Mendu DR, Madicherla NR, Chityala A. Enzyme Microbial Tech, 2006, 38: 209–214

    Article  CAS  Google Scholar 

  32. Zhu X, Ma Y, Zhao C, Lin Z, Zhang L, Chen R, Yang W. Langmuir, 2014, 30: 15229–15237

    Article  CAS  PubMed  Google Scholar 

  33. Bradford MM. Anal Biochem, 1976, 72: 248–254

    Article  CAS  Google Scholar 

  34. Ma J, Luan S, Song L, Jin J, Yuan S, Yan S, Yang H, Shi H, Yin J. ACS Appl Mater Interfaces, 2014, 6: 1971–1978

    Article  CAS  PubMed  Google Scholar 

  35. Yan S, Luan S, Shi H, Xu X, Zhang J, Yuan S, Yang Y, Yin J. Biomacromolecules, 2016, 17: 1696–1704

    Article  CAS  PubMed  Google Scholar 

  36. Klis FM. Yeast, 1994, 10: 851–869

    Article  CAS  PubMed  Google Scholar 

  37. Figueira JA, Sato HH, Fernandes P. J Agric Food Chem, 2013, 61: 626–634

    Article  CAS  PubMed  Google Scholar 

  38. Albino Gomes A, Pazinatto Telli E, Miletti LC, Skoronski E, Gomes Ghislandi M, Felippe da Silva G, Borba Magalhães ML. Biotech Appl Biochem, 2018, 65: 246–254

    Article  CAS  Google Scholar 

  39. Kazan A, Heymuth M, Karabulut D, Akay S, Yildiz-Ozturk E, Onbas R, Muderrisoglu C, Sargin S, Heils R, Smirnova I, Yesil-Celiktas O. Eng Life Sci, 2017, 17: 714–722

    Article  CAS  Google Scholar 

  40. Carvalho Y, Almeida JMAR, Romano PN, Farrance K, Demma Carà P, Pereira N, Lopez-Sanchez JA, Sousa-Aguiar EF. Appl Biochem Biotechnol, 2017, 182: 1619–1629

    Article  CAS  PubMed  Google Scholar 

  41. Zhang L, Ma Y, Zhao C, He B, Zhu X, Yang W. Ind Eng Chem Res, 2016, 55: 6354–6364

    Article  CAS  Google Scholar 

  42. Olofsson K, Bertilsson M, Lidén G. Biotechnol Biofuels, 2008, 1: 7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51521062, 51103009, 51473015), the Innovation and Promotion Project of Beijing University of Chemical Technology and the Beijing Natural Science Foundation (2162035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changwen Zhao or Wantai Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Zhu, X., Zhao, C. et al. Sequential co-immobilization of β-glucosidase and yeast cells on single polymer support for bioethanol production. Sci. China Chem. 61, 1600–1608 (2018). https://doi.org/10.1007/s11426-018-9319-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9319-1

Keywords

Navigation