Skip to main content
Log in

Metal-free visible-light-mediated aerobic oxidation of silanes to silanols

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Oxidation of silanes into silanols using water/air has attracted considerable attention. The known methods with no exception required a metal catalyst. Herein we report the first metal-free method: 2 mol% Rose Bengal as the catalyst, air (O2) as the oxidant, water as the additive and under visible light irradiation. While this method produces various silanols in a simple, cost-effective, efficient (92%–99% yields) and scalable fashion, its reaction mechanism is very different than the reported ones associated with metal catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) Ciamician G. Science 1912, 36: 385–394

    Article  PubMed  Google Scholar 

  2. Narayanam JMR, Stephenson CRJ. Chem Soc Rev 2011, 40: 102–113

    Article  CAS  PubMed  Google Scholar 

  3. Chen JR, Hu XQ, Lu LQ, Xiao WJ. Chem Soc Rev 2016, 45: 2044–2056

    Article  CAS  PubMed  Google Scholar 

  4. Lang X, Zhao J, Chen X. Chem Soc Rev 2016, 45: 3026–3038

    Article  CAS  PubMed  Google Scholar 

  5. Fabry DC, Rueping M. Acc Chem Res 2016, 49: 1969–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. (a) Nicewicz DA, MacMillan DWC. Science 2008, 322: 77–80

    Article  CAS  PubMed  Google Scholar 

  7. Feng Z, Zeng T, Xuan J, Liu Y, Lu L, Xiao WJ. Sci China Chem 2016, 59: 171–174

    Article  CAS  Google Scholar 

  8. Prier CK, Rankic DA, MacMillan DWC. Chem Rev 2013, 113: 5322–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang J, Nguyen TH, Zheng N. Sci China Chem 2016, 59: 180–183

    Article  CAS  Google Scholar 

  10. Zhao J, Wu W, Sun J, Guo S. Chem Soc Rev 2013, 42: 5323–5351

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Song RJ, Li JH. Sci China Chem 2016, 59: 161–170

    Article  CAS  Google Scholar 

  12. Zeitler K. Angew Chem Int Ed 2009, 48: 9785–9789

    Article  CAS  Google Scholar 

  13. Ye P, Wang DH, Chen B, Meng QY, Tung CH, Wu LZ. Sci China Chem 2016, 59: 175–179

    Article  CAS  Google Scholar 

  14. Majek M, Jacobi vo. Wangelin A. Acc Chem Res 2016, 49: 2316–2327

    Article  CAS  Google Scholar 

  15. Margrey KA, Nicewicz DA. Acc Chem Res 2016, 49: 1997–2006

    Article  CAS  PubMed  Google Scholar 

  16. Ravelli D, Fagnoni M, Albini A. Chem Soc Rev 2013, 42: 97–113

    Article  CAS  PubMed  Google Scholar 

  17. Hari DP, Schroll P, König B. Am Chem Soc 2012, 134: 2958–2961

    Article  CAS  Google Scholar 

  18. Meyer AU, Slanina T, Yao CJ, König B. AC. Catal 2016, 6: 369–375

    Article  CAS  Google Scholar 

  19. Yang W, Yang S, Li P, Wang L. Chem Commun 2015, 51: 7520–7523

    Article  CAS  Google Scholar 

  20. Liu M, Li Y, Yu L, Xu Q, Jiang X. Sci China Chem 2018, 61: 294–299

    Article  CAS  Google Scholar 

  21. (a) Chandrasekhar V, Boomishankar R, Nagendran S. Chem Rev 2004, 104: 5847–5910

    Article  CAS  PubMed  Google Scholar 

  22. Murugavel R, Voigt A, Walawalkar MG, Roesky HW. Chem Rev 1996, 96: 2205–2236

    Article  CAS  PubMed  Google Scholar 

  23. Denmark SE. Regens CS. AcChem Res 2008, 41: 1486–1499

    Article  CAS  Google Scholar 

  24. Murugavel R, Voigt A, Walawalkar MG, Roesky HW. Chem Rev 1996, 96: 2205–2236

    Article  CAS  PubMed  Google Scholar 

  25. (a) Denmark S E, MH Ober. Aldrichim Acta 2003, 36: 75–85

    Google Scholar 

  26. Denmark SE, Regens CS. Acc Chem Res 2008, 41: 1486–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Denmark SE. Org Chem 2009, 74: 2915–2927

    Article  CAS  Google Scholar 

  28. (a) Tran NT, Min T, Franz AK. Chem Eur J 2011, 17: 9897–9900

    Article  CAS  Google Scholar 

  29. Schafer AG, Wieting JM, Mattson AE. Org Lett 2011, 13: 5228–5231

    Article  CAS  PubMed  Google Scholar 

  30. Tran NT, Wilson SO, Franz AK. Org Lett 2012, 14: 186–189

    Article  CAS  PubMed  Google Scholar 

  31. (a) Mewald M, Schiffner JA, Oestreich M. Angew Chem Int Ed 2012, 51: 1763–1765

    Article  CAS  Google Scholar 

  32. Mewald M, Schiffner JA, Oestreich M. Angew Chem 2012, 124: 1797–1799

    Article  Google Scholar 

  33. Wang C, Ge H. Chem Eur J 2011, 17: 14371–14374

    Article  CAS  PubMed  Google Scholar 

  34. Huang C, Chattopadhyay B, Gevorgyan V. Am Chem Soc 2011, 133: 12406–12409

    Article  CAS  Google Scholar 

  35. Huang C, Ghavtadze N, Chattopadhyay B, Gevorgyan V. Am Chem Soc 2011, 133: 17630–17633

    Article  CAS  Google Scholar 

  36. Franz AK, Wilson SO. Med Chem 2013, 56: 388–405

    Article  CAS  Google Scholar 

  37. (a) Tacke R, Schmid T, Hofmann M, Tolasch T, Francke W. Organometallics 2003, 22: 370–372

    Article  CAS  Google Scholar 

  38. Kim JK, Sieburth SMN. Org Chem 2012, 77: 2901–2906

    Article  CAS  Google Scholar 

  39. (a) Cella JA, Carpenter JC. J Organomet Chem 1994, 480: 23–26

    Article  Google Scholar 

  40. Cho HM, Jeon SH, Lee HK, Kim JH, Park S, Choi MG, Lee ME. Organomet Chem 2004, 689: 471–477

    Article  CAS  Google Scholar 

  41. Sieburth SM, Mu W. Org Chem 1993, 58: 7584–7586

    Article  CAS  Google Scholar 

  42. (a) Adam W, Mello R, Curci R. Angew Chem Int Ed 1990, 29: 890–891

    Article  Google Scholar 

  43. Adam W, Mello R, Curci R. Angew Chem 1990, 102: 916–917

    Article  CAS  Google Scholar 

  44. Grabovskii SA, Kabal’nova NN, Shereshovets VV, Chatgilialoglu C. Organometallics 2002, 21: 3506–3510

    Article  CAS  Google Scholar 

  45. Asao N, Ishikawa Y, Hatakeyama N, Menggenbateer N, Yamamoto Y, Chen M, Zhang W, Inoue A. Angew Chem Int Ed 2010, 49: 10093–10095

    Article  CAS  Google Scholar 

  46. Asao N, Ishikawa Y, Hatakeyama N, Menggenbateer N, Yamamoto Y, Chen M, Zhang W, Inoue A. Angew Chem 2010, 122: 10291–10293

    Article  Google Scholar 

  47. Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Chem Commun 2009, 109: 5302–5304e

    Article  CAS  Google Scholar 

  48. Ishimoto R, Kamata K, Mizuno N. Angew Chem Int Ed 2009, 48: 8900–8904

    Article  CAS  Google Scholar 

  49. Ishimoto R, Kamata K, Mizuno N. Angew Chem 2009, 121: 9062–9066

    Article  Google Scholar 

  50. Chen Z, Zhang Q, Chen W, Dong J, Yao H, Zhang X, Tong X, Wang D, Peng Q, Chen C, He W, Li Y. Adv Mater 2018, 30: 1704720

    Article  CAS  Google Scholar 

  51. Jeon M, Han J, Park J. AC. Catal 2012, 2: 1539–1549

    CAS  Google Scholar 

  52. Yu M, Jing H, Liu X, Fu X. Organometallics 2015, 34: 5754–5758

    Article  CAS  Google Scholar 

  53. (a) Shen ZC, Yang P, Tang Y. J Org Chem 2016, 81: 309–317

    Article  CAS  PubMed  Google Scholar 

  54. Zhang MJ, Schroeder GM, He YH, Guan Z. RS. Adv 2016, 6: 96693–96699

    Article  CAS  Google Scholar 

  55. Fan W, Yang Q, Xu F, Li P. Org Chem 2014, 79: 10588–10592

    Article  CAS  Google Scholar 

  56. Li X, Gu X, Li Y, Li P. AC. Catal 2014, 4: 1897–1900

    Article  CAS  Google Scholar 

  57. Shi Q, Li P, Zhu X, Wang L. Green Chem 2016, 18: 4916–4923

    Article  CAS  Google Scholar 

  58. Ghogare AA, Greer A. Chem Rev 2016, 116: 9994–10034

    Article  CAS  PubMed  Google Scholar 

  59. Sun JG, Yang H, Li P, Zhang B. Org Lett 2016, 18: 5114–5117

    Article  CAS  PubMed  Google Scholar 

  60. Tung CH, Wu LZ, Zhang LP, Chen B. Acc Chem Res 2003, 36: 39–47

    Article  CAS  PubMed  Google Scholar 

  61. (a) Donkers RL, Workentin MS. J Am Chem Soc 2004, 126: 1688–1698

    Article  CAS  PubMed  Google Scholar 

  62. Kotani H, Ohkubo K, Fukuzumi S. Am Chem Soc 2004, 126: 15999–16006

    Article  CAS  Google Scholar 

  63. Carreño MC, González-López M, Urbano A. Angew Chem Int Ed 2006, 45: 2737–2741

    Article  CAS  Google Scholar 

  64. Ange. Chem 2006, 113: 2803–2807

  65. Catir M, Kilic H, Nardello-Rataj V, Aubry JM, Kazaz C. Org Chem 2009, 74: 4560–4564

    Article  CAS  Google Scholar 

  66. Ouannes C, Wilson T. Am Chem Soc 1968, 90: 6527–6528

    Article  CAS  Google Scholar 

  67. Kotani H, Ohkubo K, Fukuzumi S. Am Chem Soc 2004, 126: 15999–16006

    Article  CAS  Google Scholar 

  68. Klaper M, Linker T. Am Chem Soc 2015, 137: 13744–13747

    Article  CAS  Google Scholar 

  69. (a) Cui H, Wei W, Yang D, Zhang Y, Zhao H, Wang L, Wang H. Green Chem 2017, 19: 3520–3524

    Article  Google Scholar 

  70. Rahaman R, Das S, Barman P. Green Chem 2018, 20: 141–147

    Article  CAS  Google Scholar 

  71. (a) Mader MM, Norrby PO. J Am Chem Soc 2001, 123: 1970–1976

    Article  CAS  PubMed  Google Scholar 

  72. Rayment EJ, Mekareeya A, Summerhill N, Anderson EA. Am Chem Soc 2017, 139: 6138–6145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0505200) and the National Natural Science Foundation of China (21625104, 21521091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, B., Liu, LC. et al. Metal-free visible-light-mediated aerobic oxidation of silanes to silanols. Sci. China Chem. 61, 1594–1599 (2018). https://doi.org/10.1007/s11426-018-9289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9289-9

Keywords

Navigation