Skip to main content
Log in

Photoredox-catalyzed [4+2] annulation of cyclobutylanilines with alkenes, alkynes, and diynes in continuous flow

  • Articles
  • SPECIAL TOPIC · Organic Photochemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Continuous flow has recently emerged as a powerful enabling technology that greatly improves many reactions’ efficiency. Here, we apply the technology to intermolecular [4+2] annulation of cyclobutylanilines with alkenes, alkynes, and diynes by photoredox catalysis. An across-the-board improvement in the annulation’s efficiency is noticed. Moreover, a gram-scale annulation is successfully demonstrated in continuous flow using a much lower catalyst loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For selected approaches: a)_Ley SV, Fitzpatrick DE, Myers RM, Battilocchio C, Ingham, RJ. Angew Chem Int Ed, 2015, 54: 10122–10136

    Article  Google Scholar 

  2. Poliakoff M, Han X. Chem Soc Rev, 2012, 41: 1428–1436

    Article  Google Scholar 

  3. Cravotto G, Cintas P. Chem Soc Rev, 2006, 35: 180–196

    Article  CAS  Google Scholar 

  4. For selected recent reviews on continuous flow in organic synthesis: a)_Webb D, Jamison TF. Chem Sci, 2010, 1: 675–680

    Article  CAS  Google Scholar 

  5. Kirschning A, Solodenko W, Mennecke K. Chem Eur J, 2006, 12: 5972–5990

    Article  CAS  Google Scholar 

  6. Zhao DB, Ding KL. ACS Catal, 2013, 3: 928–944

    Article  CAS  Google Scholar 

  7. Wegner J, Ceylan S, Kirschning A. Adv Synth Catal, 2012, 354: 17–57

    Article  CAS  Google Scholar 

  8. Wiles C, Watts P. Green Chem, 2012, 14: 38–54

    Article  CAS  Google Scholar 

  9. For selected recent reviews on photocatalysis in flow: a)_Knowles JP, Elliott LD, Booker-Milburn KI. Beilstein J Org Chem, 2012, 8: 2025–2052

    Article  CAS  Google Scholar 

  10. Garlets ZJ, Nguyen JD, Stephenson CRJ. Isr J Chem, 2014, 54: 351–360

    Article  CAS  Google Scholar 

  11. Gilmore K, Seeberger PH. Chem Rec, 2014, 14: 410–418

    Article  CAS  Google Scholar 

  12. Braun AM, Jakob L, Oliveros E, do Nascimento CAO. Up-scaling photochemical reactions. In: Volman DH, Hammond GS, Neckers DC, Eds. Advances in photochemistry. Volume 18. Hoboken: John Wiley & Sons, 2007. 235–314

    Google Scholar 

  13. a)_Su YH, Straathof NJW, Hessel V, Noël T. Chem Eur J, 2014, 20: 10562–10589

    Article  Google Scholar 

  14. Wegner J, Ceylan S, Kirschning A. Chem Commun, 2011, 47: 4583–4592

    Article  CAS  Google Scholar 

  15. For selected recent examples: a)_Tucker JW, Zhang Y, Jamison TF, Stephenson CRJ. Angew Chem Int Ed, 2012, 51: 4144–4147

    Article  Google Scholar 

  16. Nguyen J, Reiss B, Dai CH, Stephenson CRJ. Chem Commun, 2013, 49: 4352–4354

    Article  CAS  Google Scholar 

  17. Straathof NJW, Gemoets HPL, Wang X, Schouten JC, Hessel V, Noël T. Chem Sus Chem, 2014, 7: 1612–1617

    Article  CAS  Google Scholar 

  18. Cantillo D, Frutos O, Rincon JA, Mateos C, Kappe CO. Org Lett, 2014, 16: 896–899

    Article  CAS  Google Scholar 

  19. Wang X, Cuny GD, Noël T. Angew Chem Int Ed, 2013, 52: 7860–7864

    Article  CAS  Google Scholar 

  20. Rueping M, Vila C, Bootwicha T. ACS Catal, 2013, 3: 1676–1680

    Article  CAS  Google Scholar 

  21. Hernandez-Perez AC, Collins SK. Angew Chem Int Ed, 2013, 52: 12696–12700

    Article  CAS  Google Scholar 

  22. Bou-Hamdan F, Seeberger PH. Chem Sci, 2012, 3: 1612–1616

    Article  CAS  Google Scholar 

  23. Elliott LD, Knowles JP, Koovits PJ, Maskill KG, Ralph MJ, Lejeune G, Edwards LJ, Robinson RI, Clemens IR, Cox B, Pascoe DD, Koch G, Eberle M, Berry MB, Booker-Milburn KI. Chem Eur J, 2014, 20: 15226–15232

    Article  CAS  Google Scholar 

  24. Wang J, Zheng N. Angew Chem Int Ed, 2015, 54: 11424–11427

    Article  CAS  Google Scholar 

  25. For selected examples of the cyclobutyl ring opening via single electron oxidation process: a)_Meyer K, Rocek J. J Am Chem Soc, 1972, 94: 1209–1214

    Article  CAS  Google Scholar 

  26. Tsunoi S, Ryu I, Tamura Y, Yamasaki S, Sonoda N. Synlett, 1994: 1009–1011

    Google Scholar 

  27. Casey BM, Eakin CA, Flowers II RA. Tetrahedron Lett, 2009, 50: 1264–1266

    Article  CAS  Google Scholar 

  28. Zhao HJ, Fan XF, Yu JJ, Zhu C. J Am Chem Soc, 2015, 137: 3490–3493

    Article  CAS  Google Scholar 

  29. Ren RG, Zhao HJ, Huang LT, Zhu C. Angew Chem Int Ed, 2015, 54: 12692–12696

    Article  CAS  Google Scholar 

  30. Yu JJ, Zhao HJ, Liang SG, Bao XG, Zhu C. Org Biomol Chem, 2015, 13: 7924–7927

    Article  CAS  Google Scholar 

  31. Maity S, Zhu MZ, Shinabery RS, Zheng N. Angew Chem Int Ed, 2012, 51: 222–226

    Article  CAS  Google Scholar 

  32. Nguyen TN, Morris SA, Zheng N. Adv Synth Catal, 2014, 356: 2831–2837

    Article  CAS  Google Scholar 

  33. Proposed distonic iminium ion:

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Zheng.

Additional information

Contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Nguyen, T.H. & Zheng, N. Photoredox-catalyzed [4+2] annulation of cyclobutylanilines with alkenes, alkynes, and diynes in continuous flow. Sci. China Chem. 59, 180–183 (2016). https://doi.org/10.1007/s11426-015-5547-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5547-y

Keywords

Navigation