Skip to main content
Log in

A stable metal-covalent-supramolecular organic framework hybrid: enrichment of catalysts for visible light-induced hydrogen production

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Cubic metal-covalent-supramolecular organic framework (MCSOF-1) hybrid has been created from the reaction of two molecular components and subsequent co-assembly with cucurbit[8]uril (CB[8]) in water. In the presence of CB[8], [Ru(bpy)3]2+ -based acylhydrazine 1·2Cl reacted with aldehyde 2·Cl to quantitatively yield six-armed precursor 3·8Cl through the generation of MCSOF-1. MCSOF-1 combines the structural features of metal-, covalent- and supramolecular organic frameworks. Its periodicity in water and in the solid state was confirmed by synchrotron X-ray scattering and diffraction experiments. MCSOF-1 could enrich discrete anionic polyoxometalates (POMs), maintain periodicity in acidic medium, and remarkably facilitate visible light-induced electron transfer from its [Ru(bpy)3]2+ units to enriched POMs, leading to enhanced catalysis of the POMs for the reduction of proton to H2 in both aqueous (homogeneous) and organic (heterogeneous) media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MacGillivray LR, Lukehart CM, ed. Metal-Organic Framework Materials. Singapore: Pan Stanford Publishing Ltd., 2015. 563

    Google Scholar 

  2. Feng X, Ding X, Jiang D. Chem Soc Rev, 2012, 41: 6010–6022

    Article  CAS  PubMed  Google Scholar 

  3. Ding SY, Wang W. Chem Soc Rev, 2013, 42: 548–568

    Article  CAS  PubMed  Google Scholar 

  4. Yuan F, Tan J, Guo J. Sci China Chem, 2018, 61: 143–152

    Article  CAS  Google Scholar 

  5. Yang T, Cui Y, Chen H, Li W. Acta Chim Sin, 2017, 75: 339–350

    Article  CAS  Google Scholar 

  6. Wu MX, Yang YW. Chin Chem Lett, 2017, 28: 1135–1143

    Article  CAS  Google Scholar 

  7. Wang H, Zhang DW, Li ZT. Acta Polym Sin, 2017, 1: 19–26

    Google Scholar 

  8. Liu G, Sheng J, Zhao Y. Sci China Chem, 2017, 60: 1015–1022

    Article  CAS  Google Scholar 

  9. Ma L, Wang S, Feng X, Wang B. Chin Chem Lett, 2016, 27: 1383–1394

    Article  CAS  Google Scholar 

  10. Liu XH, Guan CZ, Wang D, Wan LJ. Adv Mater, 2014, 26: 6912–6920

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Ding H, Meng X, Wang C. Chin Chem Lett, 2016, 27: 1376–1382

    Article  CAS  Google Scholar 

  12. Wang Q, Xiong S, Xiang Z, Peng S, Wang X, Cao D. Sci China Chem, 2016, 59: 643–650

    Article  CAS  Google Scholar 

  13. Zhang KD, Tian J, Hanifi D, Zhang Y, Sue ACH, Zhou TY, Zhang L, Zhao X, Liu Y, Li ZT. J Am Chem Soc, 2013, 135: 17913–17918

    Article  CAS  PubMed  Google Scholar 

  14. Tian J, Zhou TY, Zhang SC, Aloni S, Altoe MV, Xie SH, Wang H, Zhang DW, Zhao X, Liu Y, Li ZT. Nat Commun, 2014, 5: 5574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tian J, Xu ZY, Zhang DW, Wang H, Xie SH, Xu DW, Ren YH, Wang H, Liu Y, Li ZT. Nat Commun, 2016, 7: 11580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu YP, Yang B, Tian J, Yu SB, Wang H, Zhang DW, Liu Y, Li ZT. Chem Commun, 2017, 53: 13367–13370

    Article  CAS  Google Scholar 

  17. Pfeffermann M, Dong R, Graf R, Zajaczkowski W, Gorelik T, Pisula W, Narita A, Müllen K, Feng X. J Am Chem Soc, 2015, 137: 14525–14532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Zhan TG, Zhou TY, Qi QY, Xu XN, Zhao X. Chem Commun, 2016, 52: 7588–7591

    Article  CAS  Google Scholar 

  19. Xu SQ, Zhang X, Nie CB, Pang ZF, Xu XN, Zhao X. Chem Commun, 2015, 51: 16417–16420

    Article  CAS  Google Scholar 

  20. Li Y, Dong Y, Miao X, Ren Y, Zhang B, Wang P, Yu Y, Li B, Isaacs L, Cao L. Angew Chem Int Ed, 2018, 57: 729–733

    Article  CAS  Google Scholar 

  21. Ko YH, Kim E, Hwang I, Kim K. Chem Commun, 2007, 35: 1305–1315

    Article  Google Scholar 

  22. Liu Y, Yang H, Wang Z, Zhang X. Chem Asian J, 2013, 8: 1626–1632

    Article  CAS  PubMed  Google Scholar 

  23. Isaacs L. Acc Chem Res, 2014, 47: 2052–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Das D, Scherman OA. Isr J Chem, 2011, 51: 537–550

    Article  CAS  Google Scholar 

  25. Biedermann F, Nau WM, Schneider HJ. Angew Chem Int Ed, 2014, 53: 11158–11171

    Article  CAS  Google Scholar 

  26. Tian J, Chen L, Zhang DW, Liu Y, Li ZT. Chem Commun, 2016, 52: 6351–6362

    Article  CAS  Google Scholar 

  27. Tian J, Zhang L, Wang H, Zhang DW, Li ZT. Supramol Chem, 2016, 28: 769–783

    Article  CAS  Google Scholar 

  28. Wang R, Qiao S, Zhao L, Hou C, Li X, Liu Y, Luo Q, Xu J, Li H, Liu J. Chem Commun, 2017, 53: 10532–10535

    Article  CAS  Google Scholar 

  29. De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW. Chem Rev, 2009, 109: 5687–5754

    Article  CAS  PubMed  Google Scholar 

  30. Guo DS, Liu Y. Chem Soc Rev, 2012, 41: 5907

    Article  CAS  PubMed  Google Scholar 

  31. Yan X, Wang F, Zheng B, Huang F. Chem Soc Rev, 2012, 41: 6042

    Article  CAS  PubMed  Google Scholar 

  32. Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. Chem Rev, 2015, 115: 12320–12406

    Article  CAS  PubMed  Google Scholar 

  33. Wang Q, Cheng M, Cao Y, Jiang J, Wang L. Acta Chim Sin, 2016, 74: 9–16

    Article  CAS  Google Scholar 

  34. Xiong C, Sun R. Chin J Chem, 2017, 35: 1669–1672

    Article  CAS  Google Scholar 

  35. Yin ZJ, Wu ZQ, Lin F, Qi QY, Xu XN, Zhao X. Chin Chem Lett, 2017, 28: 1167–1171

    Article  CAS  Google Scholar 

  36. Wang Q, Cheng M, Jiang JL, Wang LY. Chin Chem Lett, 2017, 28: 793–797

    Article  CAS  Google Scholar 

  37. Li H, Wang J, Ni Y, Zhou Y, Yan D. Acta Chim Sin, 2016, 74: 415–421

    Article  CAS  Google Scholar 

  38. Yang L, Tan X, Wang Z, Zhang X. Chem Rev, 2015, 115: 7196–7239

    Article  CAS  PubMed  Google Scholar 

  39. Tian J, Yao C, Yang WL, Zhang L, Zhang DW, Wang H, Zhang F, Liu Y, Li ZT. Chin Chem Lett, 2017, 28: 798–806

    Article  CAS  Google Scholar 

  40. Yao C, Tian J, Wang H, Zhang DW, Liu Y, Zhang F, Li ZT. Chin Chem Lett, 2017, 28: 893–899

    Article  CAS  Google Scholar 

  41. Materials Studio 7.0, Accelrys Software Inc., San Diego, USA

  42. Yang TY, Wen W, Yin GZ, Li XL, Gao M, Gu YL, Li L, Liu Y, Lin H, Zhang XM, Zhao B, Liu TK, Yang YG, Li Z, Zhou XT, Gao XY, Nucl Sci Tech, 2015, 26: 020101

    Google Scholar 

  43. Zeng J, Bian F, Wang J, Li X, Wang Y, Tian F, Zhou P. J Synchrotron Rad, 2017, 24: 509–520

    Article  CAS  Google Scholar 

  44. Zhang ZM, Zhang T, Wang C, Lin Z, Long LS, Lin W. J Am Chem Soc, 2015, 137: 3197–3200

    Article  CAS  PubMed  Google Scholar 

  45. Wang F, Liang WJ, Jian JX, Li CB, Chen B, Tung CH, Wu LZ. Angew Chem Int Ed, 2013, 52: 8134–8138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21529201, 21432004, 91527301), the Molecular Foundry, Lawrence Berkeley National Laboratory, and the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy (DE-AC02- 05CH11231). We thank the Shanghai Synchrotron Radiation Facility for providing BL16B1 and BL14B1 beamlines for collecting the synchrotron X-ray scattering and diffraction data, and the SIBYLS Beamline 12.3.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory, for collecting solutionphase synchrotron small-angle X-ray scattering data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Liu or Zhan-Ting Li.

Electronic supplementary material

11426_2018_9234_MOESM1_ESM.pdf

A stable metal-covalent-supramolecular organic framework hy-brid: enrichment of catalysts for visible light-induced hydrogen production

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XF., Yu, SB., Yang, B. et al. A stable metal-covalent-supramolecular organic framework hybrid: enrichment of catalysts for visible light-induced hydrogen production. Sci. China Chem. 61, 830–835 (2018). https://doi.org/10.1007/s11426-018-9234-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9234-2

Keywords

Navigation