Skip to main content
Log in

Insights into the selective catalytic reduction of NO by NH3 over Mn3O4(110): a DFT study coupled with microkinetic analysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Nitric oxide (NOx), as one of the main pollutants, can contribute to a series of environmental problems, and to date the selective catalytic reduction (SCR) of NOx with NH3 in the presence of excess of O2 over the catalysts has served as one of the most effective methods, in which Mn-based catalysts have been widely studied owing to their excellent low-temperature activity toward NH3-SCR. However, the related structure-activity relation was not satisfactorily explored at the atomic level. By virtue of DFT+U calculations together with microkinetic analysis, we systemically investigate the selective catalytic reduction process of NO with NH3 over Mn3O4(110), and identify the crucial thermodynamic and kinetic factors that limit the catalytic activity and selectivity. It is found that NH3 prefers to adsorb on the Lewis acid site and then dehydrogenates into NH2* assisted by either the two- or three-fold lattice oxygen; NH2* would then react with the gaseous NO to form an important intermediate NH2NO that prefers to convert into N2O rather than N2 after the sequential dehydrogenation, while the residual H atoms interact with O2 and left the surface in the form of H2O. The rate-determining step is proposed to be the coupling reaction between NH2* and gaseous NO. Regarding the complex surface structure of Mn3O4(110), the main active sites are quantitatively revealed to be O3c and Mn4c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Voinov M. Electrochim Acta, 1982, 27: 833–835

    Article  CAS  Google Scholar 

  2. Smirniotis PG, Peña DA, Uphade BS. Angew Chem Int Ed, 2001, 40: 2479–2482

    Article  CAS  Google Scholar 

  3. Fernández-García M, Martínez-Arias A, Hanson JC, Rodriguez JA. Chem Rev, 2004, 104: 4063–4104

    Article  CAS  PubMed  Google Scholar 

  4. Grootendorst EJ, Verbeek Y, Ponec V. J Catal, 1995, 157: 706–712

    Article  CAS  Google Scholar 

  5. Weimin W, Yongnian Y, Jiayu Z. Appl Catal A-Gen, 1995, 133: 81–93

    Article  CAS  Google Scholar 

  6. Chang Y, McCarty JG. Catal Today, 1996, 30: 163–170

    Article  CAS  Google Scholar 

  7. Stobbe ER, de Boer BA, Geus JW. Catal Today, 1999, 47: 161–167

    Article  CAS  Google Scholar 

  8. Bell AT. Science, 2003, 299: 1688–1691

    Article  CAS  PubMed  Google Scholar 

  9. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ. Nature, 2008, 453: 638–641

    Article  CAS  PubMed  Google Scholar 

  10. Kang M, Park ED, Kim JM, Yie JE. Appl Catal A-Gen, 2007, 327: 261–269

    Article  CAS  Google Scholar 

  11. Xie J, Fang D, He F, Chen J, Fu Z, Chen X. Catal Commun, 2012, 28: 77–81

    Article  CAS  Google Scholar 

  12. Kapteijn F, Singoredjo L, Andreini A, Moulijn JA. Appl Catal B-Environ, 1994, 3: 173–189

    Article  CAS  Google Scholar 

  13. Yang S, Liao Y, Xiong S, Qi F, Dang H, Xiao X, Li J. J Phys Chem C, 2014, 118: 21500–21508

    Article  CAS  Google Scholar 

  14. Yang S, Fu Y, Liao Y, Xiong S, Qu Z, Yan N, Li J. Catal Sci Technol, 2014, 4: 224–232

    Article  CAS  Google Scholar 

  15. Kapteijn F, Singoredjo L, Vandriel M, Andreini A, Moulijn JA, Ramis G, Busca G. J Catal, 1994, 150: 105–116

    Article  CAS  Google Scholar 

  16. Singoredjo L, Korver R, Kapteijn F, Moulijn J. Appl Catal B-Environ, 1992, 1: 297–316

    Article  CAS  Google Scholar 

  17. Yang S, Wang C, Li J, Yan N, Ma L, Chang H. Appl Catal B-Environ, 2011, 110: 71–80

    Article  CAS  Google Scholar 

  18. Kijlstra WS, Brands DS, Poels EK, Bliek A. J Catal, 1997, 171: 208–218

    Article  CAS  Google Scholar 

  19. Chartier A, D’arco P, Dovesi R, Saunders VR. Phys Rev B, 1999, 60: 14042–14048

    Article  CAS  Google Scholar 

  20. Franchini C, Podloucky R, Paier J, Marsman M, Kresse G. Phys Rev B, 2007, 75: 195128

    Article  CAS  Google Scholar 

  21. Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  22. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K. Phys Rev Lett, 2008, 100: 136406

    Article  CAS  PubMed  Google Scholar 

  23. Kresse G, Joubert D. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  24. Alavi A, Hu P, Deutsch T, Silvestrelli PL, Hutter J. Phys Rev Lett, 1998, 80: 3650–3653

    Article  CAS  Google Scholar 

  25. Liu ZP, Hu P. J Am Chem Soc, 2003, 125: 1958–1967

    Article  CAS  PubMed  Google Scholar 

  26. Michaelides A, Hu P. J Am Chem Soc, 2001, 123: 4235–4242

    Article  CAS  PubMed  Google Scholar 

  27. Liu ZP, Hu P, Alavi A. J Am Chem Soc, 2002, 124: 14770–14779

    Article  CAS  PubMed  Google Scholar 

  28. Hirai S, Goto Y, Sakai Y, Wakatsuki A, Kamihara Y, Matoba M. J Phys Soc Jpn, 2015, 84: 114702

    Article  Google Scholar 

  29. Hammer B, Norskov JK. Adv Catal, 2000, 31: 71–129

    Google Scholar 

  30. Pallassana V, Neurock M. J Catal, 2000, 191: 301–317

    Article  CAS  Google Scholar 

  31. Michaelides A, Liu ZP, Zhang CJ, Alavi A, King DA, Hu P. J Am Chem Soc, 2003, 125: 3704–3705

    Article  CAS  PubMed  Google Scholar 

  32. Marbán G, Valdés-Solís T, Fuertes AB. Phys Chem Chem Phys, 2004, 6: 453–464

    Article  Google Scholar 

  33. NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/. Accessed on 2017–08-26

  34. Qi G, Yang RT, Chang R. Appl Catal B-Environ, 2004, 51: 93–106

    Article  CAS  Google Scholar 

  35. Park KH, Lee SM, Kim SS, Kwon DW, Hong SC. Catal Lett, 2013, 143: 246–253

    Article  CAS  Google Scholar 

  36. Yang S, Xiong S, Liao Y, Xiao X, Qi F, Peng Y, Fu Y, Shan W, Li J. Environ Sci Technol, 2014, 48: 10354–10362

    Article  CAS  PubMed  Google Scholar 

  37. Qi G, Yang RT. Appl Catal B-Environ, 2003, 44: 217–225

    Article  CAS  Google Scholar 

  38. Stegelmann C, Andreasen A, Campbell CT. J Am Chem Soc, 2009, 131: 8077–8082

    Article  CAS  PubMed  Google Scholar 

  39. Campbell CT. J Catal, 2001, 204: 520–524

    Article  CAS  Google Scholar 

  40. Qi G, Yang RT. J Catal, 2003, 217: 434–441

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21333003, 21622305), Young Elite Scientist Sponsorship Program by China Association for Science and Technology (YESS20150131), “Shu Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (13SG30), and the Fundamental Research Funds for the Central Universities (WJ616007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haifeng Wang or P. Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Yuan, H., Wang, H. et al. Insights into the selective catalytic reduction of NO by NH3 over Mn3O4(110): a DFT study coupled with microkinetic analysis. Sci. China Chem. 61, 457–467 (2018). https://doi.org/10.1007/s11426-017-9134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9134-0

Keywords

Navigation