Skip to main content
Log in

Low-Temperature Selective Catalytic Reduction of NO with NH3 Over Mn–Ti Oxide Catalyst: Effect of the Synthesis Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Mn–Ti oxide catalysts were synthesized by the sol–gel method and the effects of different synthesis conditions were investigated in sequence. The microstructures and properties of the catalysts were characterized by using N2 adsorption–desorption, XRD, SEM, H2-TPR, NH3-TPD, Raman and XPS. The catalytic performance over Mn–Ti oxide catalysts prepared under different synthesis conditions for the low-temperature SCR of NO with NH3 were also comparatively evaluated. The results reveal that the calcination temperature and metal source play a significant role in the characteristics and the SCR activities of the catalysts. A relatively low calcination temperature is beneficial to low-temperature SCR activity. Manganese nitrate or manganese acetate as the Mn source combining with tetrabutyl titanate as Ti source can achieve high SCR activities. The excellent low-temperature NH3-SCR activity can be ascribed to the appropriate textural properties, amorphous Mn-oxides with equal ratio of Mn3+/Mn4+, good low-temperature reducibility and abundant surface B-acid sites.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wang JH, Zhao HW, Halle G, Li YD (2017) Appl Catal B 202:346–354

    CAS  Google Scholar 

  2. Han LP, Gao M, Hasegawa J, Li SX, Shen YJ, Li HR, Shi LY, Zhang DS (2019) Environ Sci Technol 53:6462–6473

    CAS  PubMed  Google Scholar 

  3. Wu R, Zhang N, Liu X, Li L, Song L, Qiu W, He H (2018) Catal Lett 148:1228–1235

    CAS  Google Scholar 

  4. Cheng K, Liu J, Zhang T, Li J, Zhao Z, Wei Y, Jiang G, Duan A (2014) J Environ Sci 26:2106–2113

    Google Scholar 

  5. He GZ, Lian ZH, Yu YB, Yang Y, Liu K, Shi XY, Yan ZD, Shan WP, He H (2018) Sci Adv 4:eaau4637

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Song L, Zhan Z, Sun X, Zhu H, Qiu W, He H, Li J (2020) J Mater Sci 55:4570–4577

    CAS  Google Scholar 

  7. Liu J, Zhao Z, Xu C, Liu J (2019) Chin J Catal 40:1438–1487

    CAS  Google Scholar 

  8. Liu J, Cheng H, Tan J, Liu B, Zhang Z, Leng Y, Xu H, Zhao M, Song W, Liu J, Zhao Z, Xu C (2020) J Mater Chem A 7:22977–22985

    Google Scholar 

  9. Chang H, Chen X, Li J, Ma L, Wang C, Liu C, Schwank JW, Hao J (2013) Environ Sci Technol 47:5294–5301

    CAS  PubMed  Google Scholar 

  10. Cheng H, Feng G, Yang Z, Wang T, Okejiri F, Tan J, Zhao M, Liu J, Liu J, Zhao Z (2019) Chem Commun 55:15073–15076

    CAS  Google Scholar 

  11. Liu J, Liu J, Zhao Z, Wei Y, Song W (2017) AIChE J 63:4430–4441

    CAS  Google Scholar 

  12. Liu J, Du Y, Liu J, Zhao Z, Cheng K, Chen Y, Wei Y, Song W, Zhang X (2017) Appl Catal B 203:704–714

    CAS  Google Scholar 

  13. Wu Z, Jiang B, Liu Y, Zhao W, Guan B (2007) J Hazard Mater 145:488–494

    CAS  PubMed  Google Scholar 

  14. Liu J, Guo R, Li M, Sun P, Liu S, Pan W, Liu S, Sun X (2018) Fuel 223:385–393

    CAS  Google Scholar 

  15. Ma Z, Sheng L, Wang X, Yuan W, Chen S, Xue W, Han G, Zhang Z, Yang H, Lu Y, Wang Y (2019) Adv Mater 31:1903719–1903726

    CAS  Google Scholar 

  16. Smirniotis PG, Peña DA, Uphade BS (2001) Angew Chem Int Ed 40(13):2479–2482

    CAS  Google Scholar 

  17. Qi G, Yang RT (2003) Appl Catal B 44:217–225

    CAS  Google Scholar 

  18. Kapteijn F, Singoredjo L, Andreini A (1994) Appl Catal B 3:73–189

    Google Scholar 

  19. Tang X, Hao J, Xu W, Li J (2007) Catal Commun 8(3):329–334

    CAS  Google Scholar 

  20. Yang Y, Wang M, Tao Z, Liu Q, Fei Z, Chen X, Zhang Z, Tang J, Cui M, Qiao X (2018) Catal Sci Technol 8:6396–6406

    CAS  Google Scholar 

  21. Liu C, Shi JW, Gao C, Niu C (2016) Appl Catal A 522:54–69

    CAS  Google Scholar 

  22. Jiang B, Liu Y, Wu Z (2009) J Hazard Mater 162:1249–1254

    CAS  PubMed  Google Scholar 

  23. Zhang X, Xing Y, Song Z, Zhao H, Zhao M, Zhao J, Ma Z, Zhang P, Tsubaki N (2019) New J Chem 43:1818–1826

    CAS  Google Scholar 

  24. Niu Y, Zhang X, Zhang H, Liang Y, Li S, Yao Q, Wang D, Hui S (2019) Can J Chem Eng 97:1407–1417

    CAS  Google Scholar 

  25. Li JH, Chen JJ, Ke R, Luo CK, Hao JM (2007) Catal Commun 8:1896–1900

    CAS  Google Scholar 

  26. Klimova TE, Valencia D, Mendoza-Nieto JA, Hernández-Hipólito P (2013) J Catal 304:29–46

    CAS  Google Scholar 

  27. Ramesh K, Chen L, Chen F, Liu Y, Wang Z, Han YF (2008) Catal Today 131:477–482

    CAS  Google Scholar 

  28. Ettireddy PR, Ettireddy N, Mamedov S, Boolchand P, Smirniotis PG (2007) Appl Catal B 76:123–134

    CAS  Google Scholar 

  29. Putluru SSR, Schill L, Jensen AD, Siret B, Tabaries F, Fehrmann R (2015) Appl Catal B 165:628–635

    CAS  Google Scholar 

  30. Li W, Guo R, Wang S, Pan W, Chen Q, Li M, Sun P, Liu S (2016) Fuel Process Technol 154:235–242

    CAS  Google Scholar 

  31. Yang Y, Hu Z, Mi R, Li D, Yong X, Yang H, Liu K (2019) RSC Adv 9:4682–4692

    CAS  Google Scholar 

  32. Wang J, Dong X, Wang Y, Li Y (2015) Catal Today 245:10–15

    CAS  Google Scholar 

  33. Huang J, Tong Z, Huang Y, Zhang J (2008) Appl Catal B 78:309–314

    CAS  Google Scholar 

  34. Meng D, Zhan W, Guo Y, Guo Y, Wang Y, Wang L, Lu G (2016) J Mol Catal A 420:272–281

    CAS  Google Scholar 

  35. Fang N, Guo J, Shu S, Luo H, Li J, Chu Y (2018) J Taiwan Inst Chem Eng 93:277–288

    CAS  Google Scholar 

  36. Li Q, Li X, Li W, Zhong L, Zhang C, Fang Q, Chen G (2019) Chem Eng J 369:26–34

    CAS  Google Scholar 

  37. Liu F, He H (2010) J Phys Chem C 114:16929–16936

    CAS  Google Scholar 

  38. Jing LQ, Xu ZL, Sun XJ, Shang J, Cai WM (2001) Appl Surf Sci 180:308–314

    CAS  Google Scholar 

  39. Hu H, Zha K, Li H, Shi L, Zhang D (2016) Appl Surf Sci 387:921–928

    CAS  Google Scholar 

  40. Guo R, Zhou Y, Pan W, Hong J, Zhen W, Jin Q, Ding C, Guo S (2013) J Ind Eng Chem 19:2022–2025

    CAS  Google Scholar 

  41. Fang D, He F, Xie J (2019) J Energy Inst 92:319–331

    CAS  Google Scholar 

  42. Wang D, Yao Q, Hui S, Niu Y (2018) Fuel 234:650–655

    CAS  Google Scholar 

  43. Tang X, Li J, Sun L, Hao J (2010) Appl Catal B 99:156–162

    CAS  Google Scholar 

  44. Yan Q, Chen S, Zhang C, Wang Q, Louis B (2018) Appl Catal B 238:236–247

    CAS  Google Scholar 

  45. Gao X, Jiang Y, Zhong Y, Luo ZY, Cen KF (2010) J Hazard Mater 174:734–739

    CAS  PubMed  Google Scholar 

  46. Chen L, Yuan F, Li Z, Niu X, Zhu Y (2018) Chem Eng J 354:393–406

    CAS  Google Scholar 

  47. Meng D, Zhan W, Guo Y, Guo Y, Wang L, Lu G (2015) ACS Catal 5:5973–5983

    CAS  Google Scholar 

  48. Wu Z, Jiang B, Liu Y, Wang H, Jin R (2007) Environ Sci Technol 41:5812–5817

    CAS  PubMed  Google Scholar 

  49. Kijlstra WS, Brands DS, Smit HI, Poels EK, Bliek A (1997) J Catal 1:208–218

    Google Scholar 

  50. Chen T, Guan B, Lin H, Zhu L (2014) Chin J Catal 35:294–301

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported from Beijing Natural Science Foundation (2194075) and the special fund from the Beijing Institute of Petrochemical Technology (Grant No. 15031862004-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingsheng Luo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Yang, J., Luo, M. et al. Low-Temperature Selective Catalytic Reduction of NO with NH3 Over Mn–Ti Oxide Catalyst: Effect of the Synthesis Conditions. Catal Lett 151, 966–979 (2021). https://doi.org/10.1007/s10562-020-03365-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03365-y

Keywords

Navigation