Skip to main content
Log in

The designing strategies of graphene-based peroxidase mimetic materials

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Natural enzymes have been praised highly as ideal catalysts, presumably owing to their remarkable advantages of high efficiency, high selectivity, and mild reaction conditions. The reports of chemical simulation and systematic synthesis of natural enzymes such as peroxidase (POD) are rare because of their complex biological structures. POD represents a large family of oxidoreductases and offers a wide range of applications in many fields of science. Recent advance in the fusion of nanomaterial, catalysis, and biochemistry has inspired the development of artificial enzymes implemented with desired catalytic features of natural enzymes. Herein, we review the redox chemistry of POD and compare its catalytic performance to graphene-based nanomaterials (G-NMs) as POD mimetic nanoenzymes bases on catalytic center, binding site, and carrier function. Based on the viewpoints of stereo chemistry and molecular kinetic and dynamics in heterogeneous system, we evaluate and compare the suitability of different NMs as artificial enzyme constituent. We propose that reevaluates design strategies of graphene-based peroxidase (G-POD) mimetic materials and emphasizes on their selectivity (role as catalytic center, binding site, or carrier) is of uttermost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolfenden R, Snider MJ. Acc Chem Res, 2001, 34: 938–945

    Article  CAS  PubMed  Google Scholar 

  2. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG. Science, 2004, 303: 186–195

    Article  CAS  PubMed  Google Scholar 

  3. Breslow R. Chem Soc Rev, 1972, 1: 553–580

    Article  CAS  Google Scholar 

  4. Tabushi I. Acc Chem Res, 1982, 15: 66–72

    Article  CAS  Google Scholar 

  5. Breaker RR, Joyce GF. Chem Biol, 1994, 1: 223–229

    Article  CAS  PubMed  Google Scholar 

  6. Agostini E, Hernández-Ruiz J, Arnao MB, Milrad SR, Tigier HA, Acosta M. Biotechnol Appl Biochem, 2002, 35: 1

    Article  CAS  PubMed  Google Scholar 

  7. Friedle S, Reisner E, Lippard SJ. Chem Soc Rev, 2010, 39: 2768–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Veitch NC. Phytochemistry, 2004, 65: 249–259

    Article  CAS  PubMed  Google Scholar 

  9. Seibert E, Tracy TS. Enzyme Kinetics in Drug Metabolism. Clifton: Humana Press, 2017. 9–22

    Google Scholar 

  10. Zhou Y, Wang M, Xu Z, Ni C, Yin H, Ai S. Biosens Bioelectron, 2014, 54: 244–250

    Article  CAS  PubMed  Google Scholar 

  11. Pauling L. Nature, 1948, 161: 707–709

    Article  CAS  PubMed  Google Scholar 

  12. Cramer F, Kampe W. J Am Chem Soc, 1965, 87: 1115–1120

    Article  CAS  PubMed  Google Scholar 

  13. Wang GL, Xu X, Wu X, Cao G, Dong Y, Li Z. J Phys Chem C, 2014, 118: 28109–28117

    Article  CAS  Google Scholar 

  14. Zheng X, Zhu Q, Song H, Zhao X, Yi T, Chen H, Chen X. ACS Appl Mater Interf, 2015, 7: 3480–3491

    Article  CAS  Google Scholar 

  15. Takagishi T, Klotz IM. Biopolymers, 1972, 11: 483–491

    Article  CAS  PubMed  Google Scholar 

  16. Klotz IM, Royer GP, Scarpa IS. Proc Natl Acad Sci USA, 1971, 68: 263–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clarke JR, Marquardt RR, Oosterveld A, Frohlich AA, Madrid FJ, Dawood M. J Agric Food Chem, 1993, 41: 1784–1789

    Article  CAS  Google Scholar 

  18. Schoemaker HE, Piontek K. Pure Appl Chem, 1996, 68: 2089–2096

    Article  CAS  Google Scholar 

  19. Wan X, Huang Y, Chen Y. Acc Chem Res, 2012, 45: 598–607

    Article  CAS  PubMed  Google Scholar 

  20. Zhao R, Zhao X, Gao X. Chem Eur J, 2015, 21: 960–964

    Article  CAS  PubMed  Google Scholar 

  21. Park KS, Kim MI, Cho DY, Park HG. Small, 2011, 7: 1521–1525

    Article  CAS  PubMed  Google Scholar 

  22. Wang Q, Lei J, Deng S, Zhang L, Ju H. Chem Commun, 2013, 49: 916–918

    Article  CAS  Google Scholar 

  23. Bhabak KP, Mugesh G. Acc Chem Res, 2010, 43: 1408–1419

    Article  CAS  PubMed  Google Scholar 

  24. Bonar-Law RP, Sanders JKM. J Am Chem Soc, 1995, 117: 259–271

    Article  CAS  Google Scholar 

  25. Tabushi I, Shimizu N, Sugimoto T, Shiozuka M, Yamamura K. J Am Chem Soc, 1977, 99: 7100–7102

    Article  CAS  Google Scholar 

  26. Li R, Zhen M, Guan M, Chen D, Zhang G, Ge J, Gong P, Wang C, Shu C. Biosens Bioelectron, 2013, 47: 502–507

    Article  CAS  PubMed  Google Scholar 

  27. Liu S, Wang L, Zhai J, Luo Y, Sun X. Anal Methods, 2011, 3: 1475–1477

    Article  CAS  Google Scholar 

  28. Safavi A, Sedaghati F, Shahbaazi H, Farjami E. RSC Adv, 2012, 2: 7367–7370

    Article  CAS  Google Scholar 

  29. Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, Huang Y. Chem Commun, 2011, 47: 6695–6697

    Article  CAS  Google Scholar 

  30. Song Y, Wang X, Zhao C, Qu K, Ren J, Qu X. Chem Eur J, 2010, 16: 3617–3621

    Article  CAS  PubMed  Google Scholar 

  31. Cuevas F, Di Stefano S, Magrans JO, Prados P, Mandolini L, de Mendoza J. Chem Eur J, 2000, 6: 3228–3234

    Article  CAS  PubMed  Google Scholar 

  32. Lin Y, Ren J, Qu X. Acc Chem Res, 2014, 47: 1097–1105

    Article  CAS  PubMed  Google Scholar 

  33. Zhang LN, Deng HH, Lin FL, Xu XW, Weng SH, Liu AL, Lin XH, Xia XH, Chen W. Anal Chem, 2014, 86: 2711–2718

    Article  CAS  PubMed  Google Scholar 

  34. Wei H, Wang E. Chem Soc Rev, 2013, 42: 6060–6093

    Article  CAS  PubMed  Google Scholar 

  35. Liu G, Zhang X, Zhou J, Wang A, Wang J, Jin R, Lv H. Bioresource Tech, 2013, 149: 503–508

    Article  CAS  Google Scholar 

  36. Sun W, Ju X, Zhang Y, Sun X, Li G, Sun Z. ElectroChem Commun, 2013, 26: 113–116

    Article  CAS  Google Scholar 

  37. Wang Z, Lv X, Weng J. Carbon, 2013, 62: 51–60

    Article  CAS  Google Scholar 

  38. Zhang B, He Y, Liu B, Tang D. Anal Chim Acta, 2014, 851: 49–56

    Article  CAS  PubMed  Google Scholar 

  39. Chen W, Liu GC, Ouyang J, Gao MJ, Liu B, Zhao YD. Sci China Chem, 2017, 60: 721–729

    Article  CAS  Google Scholar 

  40. al-Kassim L, Taylor KE, Nicell JA, Bewtra JK, Biswas N. J Chem Technol Biotechnol, 1994, 61: 179–182

    Article  CAS  PubMed  Google Scholar 

  41. O’Brien PJ. Chem-Biol Interact, 2000, 129: 113–139

    Article  PubMed  Google Scholar 

  42. Green MT, Dawson JH, Gray HB. Science, 2004, 304: 1653–1656

    Article  CAS  PubMed  Google Scholar 

  43. Quick KL, Ali SS, Arch R, Xiong C, Wozniak D, Dugan LL. NeuroBiol Aging, 2008, 29: 117–128

    Article  CAS  PubMed  Google Scholar 

  44. Aitken MD, Massey IJ, Chen T, Heck PE. Water Res, 1994, 28: 1879–1889

    Article  CAS  Google Scholar 

  45. Kim JG, Park SJ, Sinninghe Damsté JS, Schouten S, Rijpstra WIC, Jung MY, Kim SJ, Gwak JH, Hong H, Si OJ, Lee SH, Madsen EL, Rhee SK. Proc Natl Acad Sci USA, 2016, 113: 7888–7893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen X, Su B, Cai Z, Chen X, Oyama M. Sensors Actuat B-Chem, 2014, 201: 286–292

    Article  CAS  Google Scholar 

  47. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Nat Nanotech, 2007, 2: 577–583

    Article  CAS  Google Scholar 

  48. He W, Wu X, Liu J, Hu X, Zhang K, Hou S, Zhou W, Xie S. Chem Mater, 2010, 22: 2988–2994

    Article  CAS  Google Scholar 

  49. Zhan L, Li CM, Wu WB, Huang CZ. Chem Commun, 2014, 50: 11526–11528

    Article  CAS  Google Scholar 

  50. Chen X, Zhai N, Snyder JH, Chen Q, Liu P, Jin L, Zheng Q, Lin F, Hu J, Zhou H. Anal Methods, 2015, 7: 1951–1957

    Article  CAS  Google Scholar 

  51. Fan J, Yin JJ, Ning B, Wu X, Hu Y, Ferrari M, Anderson GJ, Wei J, Zhao Y, Nie G. Biomaterials, 2011, 32: 1611–1618

    Article  CAS  PubMed  Google Scholar 

  52. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JES, Seal S, Self WT. Chem Commun, 2010, 46: 2736–2738

    Article  CAS  Google Scholar 

  53. Yoshihisa Y, Zhao QL, Hassan MA, Wei ZL, Furuichi M, Miyamoto Y, Kondo T, Shimizu T. Free Radical Res, 2011, 45: 326–335

    Article  CAS  Google Scholar 

  54. Carmel-Harel O, Storz G. Annu Rev Microbiol, 2000, 54: 439–461

    Article  CAS  PubMed  Google Scholar 

  55. Ruzgas T, Csoregi E, Katakis I, Kenausis G, Gorton L. J Mol Recognit, 1996, 9: 480–484

    Article  CAS  PubMed  Google Scholar 

  56. Garg B, Ling YC. Chem Commun, 2015, 51: 8809–8812

    Article  CAS  Google Scholar 

  57. Weber R, Gaus C, Tysklind M, Johnston P, Forter M, Hollert H, Heinisch E, Holoubek I, Lloyd-Smith M, Masunaga S, Moccarelli P, Santillo D, Seike N, Symons R, Torres JPM, Verta M, Varbelow G, Vijgen J, Watson A, Costner P, Woelz J, Wycisk P, Zennegg M. Environ Sci Pollut Res, 2008, 15: 363–393

    Article  CAS  Google Scholar 

  58. Longoria A, Tinoco R, Vázquez-Duhalt R. Chemosphere, 2008, 72: 485–490

    Article  CAS  PubMed  Google Scholar 

  59. Jauregui J, Valderrama B, Albores A, Vazquez-Duhalt R. Biodegradation, 2003, 14: 397–406

    Article  CAS  PubMed  Google Scholar 

  60. Thurston CF. Microbiology, 1994, 140: 19–26

    Article  CAS  Google Scholar 

  61. Asati A, Santra S, Kaittanis C, Nath S, Perez JM. Angew Chem Int Ed, 2009, 48: 2308–2312

    Article  CAS  Google Scholar 

  62. Garg B, Bisht T, Ling YC. Molecules, 2015, 20: 14155–14190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Song Y, Qu K, Zhao C, Ren J, Qu X. Adv Mater, 2010, 22: 2206–2210

    Article  CAS  PubMed  Google Scholar 

  64. Lim SY, Ahn J, Lee JS, Kim MG, Park CB. Small, 2012, 8: 1994–1999

    Article  CAS  PubMed  Google Scholar 

  65. Qu F, Li T, Yang M. Biosens Bioelectron, 2011, 26: 3927–3931

    Article  CAS  PubMed  Google Scholar 

  66. Ragg R, Tahir MN, Tremel W. Eur J Inorg Chem, 2016, 2016: 1906–1915

    Article  CAS  Google Scholar 

  67. Ali SS, Hardt JI, Quick KL, Sook Kim-Han J, Erlanger BF, Huang T, Epstein CJ, Dugan LL. Free Radical Biol Med, 2004, 37: 1191–1202

    Article  CAS  Google Scholar 

  68. Garg B, Bisht T, Ling YC. Curr Organ Chem, 2016, 20: 1547–1566

    Article  CAS  Google Scholar 

  69. Garg B, Bisht T, Ling YC. RSC Adv, 2014, 4: 57297–57307

    Article  CAS  Google Scholar 

  70. Chen X, Tian X, Su B, Huang Z, Chen X, Oyama M. Dalton Trans, 2014, 43: 7449–7454

    Article  CAS  PubMed  Google Scholar 

  71. Tao Y, Lin Y, Ren J, Qu X. Biomaterials, 2013, 34: 4810–4817

    Article  CAS  PubMed  Google Scholar 

  72. Lin Y, Wu L, Huang Y, Ren J, Qu X. Chem Sci, 2015, 6: 1272–1276

    Article  CAS  PubMed  Google Scholar 

  73. Sun R, Wang Y, Ni Y, Kokot S. J Hazard Mater, 2014, 266: 60–67

    Article  CAS  PubMed  Google Scholar 

  74. Lin B, Sun Q, Liu K, Lu D, Fu Y, Xu Z, Zhang W. Langmuir, 2014, 30: 2144–2151

    Article  CAS  PubMed  Google Scholar 

  75. Hu C, Xi Q, Ge J, Luo FY, Tang LJ, Jiang JH, Yu RQ. RSC Adv, 2014, 4: 64252–64257

    Article  CAS  Google Scholar 

  76. Garg B, Ling YC. ChemInform, 2014, doi: 10.1002/chin.201404246

    Google Scholar 

  77. Bi S, Zhao T, Jia X, He P. Biosens Bioelectron, 2014, 57: 110–116

    Article  CAS  PubMed  Google Scholar 

  78. Zink J, Wyrobnik T, Prinz T, Schmid M. Inter J Mol Sci, 2016, 17: 1376

    Article  CAS  Google Scholar 

  79. Lv X, Weng J. Sci Rep, 2013, 3: 3285

    Article  PubMed  PubMed Central  Google Scholar 

  80. Xue T, Jiang S, Qu Y, Su Q, Cheng R, Dubin S, Chiu CY, Kaner R, Huang Y, Duan X. Angew Chem Int Ed, 2012, 51: 3822–3825

    Article  CAS  Google Scholar 

  81. Guo Y, Li J, Dong S. Sensors Actuat B-Chem, 2011, 160: 295–300

    Article  CAS  Google Scholar 

  82. Guo Y, Deng L, Li J, Guo S, Wang E, Dong S. ACS Nano, 2011, 5: 1282–1290

    Article  CAS  PubMed  Google Scholar 

  83. Hua BY, Wang J, Wang K, Li X, Zhu XJ, Xia XH. Chem Commun, 2012, 48: 2316–2318

    Article  CAS  Google Scholar 

  84. Song Y, Chen Y, Feng L, Ren J, Qu X. Chem Commun, 2011, 47: 4436–4438

    Article  CAS  Google Scholar 

  85. Huang C, Bai H, Li C, Shi G. Chem Commun, 2011, 47: 4962–4964

    Article  CAS  Google Scholar 

  86. Bachrach SM. WIREs Comput Mol Sci, 2014, 4: 482–487

    Article  CAS  Google Scholar 

  87. Yates BF. In: Annual Reports on the Progress of Chemistry. Cambridgeshire: Royal Society Chemistry, 2005. 210–234

    Google Scholar 

  88. Zhang X, Wu G, Cai Z, Chen X. Talanta, 2015, 134: 132–135

    Article  CAS  PubMed  Google Scholar 

  89. Lin XQ, Deng HH, Wu GW, Peng HP, Liu AL, Lin XH, Xia XH, Chen W. Analyst, 2015, 140: 5251–5256

    Article  CAS  PubMed  Google Scholar 

  90. Qian J, Yang X, Jiang L, Zhu C, Mao H, Wang K. Sensors Actuat B-Chem, 2014, 201: 160–166

    Article  CAS  Google Scholar 

  91. Ma Y, Zhao M, Cai B, Wang W, Ye Z, Huang J. Chem Commun, 2014, 50: 11135–11138

    Article  CAS  Google Scholar 

  92. Xie J, Cao H, Jiang H, Chen Y, Shi W, Zheng H, Huang Y. Anal Chim Acta, 2013, 796: 92–100

    Article  CAS  PubMed  Google Scholar 

  93. Ma M, Zhang Y, Gu N. Colloids Surf A, 2011, 373: 6–10

    Article  CAS  Google Scholar 

  94. Yuan F, Zhao H, Liu M, Quan X. Biosens Bioelectron, 2015, 68: 7–13

    Article  CAS  PubMed  Google Scholar 

  95. Bianco A. Angew Chem Int Ed, 2013, 52: 4986–4997

    Article  CAS  Google Scholar 

  96. Sun H, Wu L, Wei W, Qu X. Mater Today, 2013, 16: 433–442

    Article  CAS  Google Scholar 

  97. Zheng AX, Cong ZX, Wang JR, Li J, Yang HH, Chen GN. Biosens Bioelectron, 2013, 49: 519–524

    Article  CAS  PubMed  Google Scholar 

  98. Zhang Y, Wu C, Zhou X, Wu X, Yang Y, Wu H, Guo S, Zhang J. Nanoscale, 2013, 5: 1816–1819

    Article  CAS  PubMed  Google Scholar 

  99. Nirala NR, Abraham S, Kumar V, Bansal A, Srivastava A, Saxena PS. Sensors Actuat B-Chem, 2015, 218: 42–50

    Article  CAS  Google Scholar 

  100. Lin L, Song X, Chen Y, Rong M, Zhao T, Wang Y, Jiang Y, Chen X. Anal Chim Acta, 2015, 869: 89–95

    Article  CAS  PubMed  Google Scholar 

  101. Wu X, Zhang Y, Han T, Wu H, Guo S, Zhang J. RSC Adv, 2014, 4: 3299–3305

    Article  CAS  Google Scholar 

  102. Bacon M, Bradley SJ, Nann T. Part Part Syst Charact, 2014, 31: 415–428

    Article  CAS  Google Scholar 

  103. Gollavelli G, Ling YC. Biomaterials, 2012, 33: 2532–2545

    Article  CAS  PubMed  Google Scholar 

  104. Gollavelli G, Ling YC. Biomaterials, 2014, 35: 4499–4507

    Article  CAS  PubMed  Google Scholar 

  105. Sumner JB. J Biol Chem, 1926, 69: 435-441

    CAS  Google Scholar 

  106. Garg B, Bisht T, Ling YC. Molecules, 2014, 19: 14582–14614

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  107. Zhang YL, Chen QD, Jin Z, Kim E, Sun HB. Nanoscale, 2012, 4: 4858–4869

    Article  CAS  PubMed  Google Scholar 

  108. Huang X, Qi X, Boey F, Zhang H. Chem Soc Rev, 2012, 41: 666–686

    Article  CAS  PubMed  Google Scholar 

  109. Tramontano A, Janda KD, Lerner RA. Science, 1986, 234: 1566–1570

    Article  CAS  PubMed  Google Scholar 

  110. Garg B, Sung CH, Ling YC. WIREs Nanomed Nanobiotechnol, 2015, 7: 737–758

    Article  CAS  Google Scholar 

  111. Seabra AB, Paula AJ, de Lima R, Alves OL, Durán N. Chem Res Toxicol, 2014, 27: 159–168

    Article  CAS  PubMed  Google Scholar 

  112. Tao Y, Lin Y, Huang Z, Ren J, Qu X. Adv Mater, 2013, 25: 2594–2599

    Article  CAS  PubMed  Google Scholar 

  113. Manea F, Houillon FB, Pasquato L, Scrimin P. Angew Chem Int Ed, 2004, 43: 6165–6169

    Article  CAS  Google Scholar 

  114. Comotti M, Della Pina C, Matarrese R, Rossi M. Angew Chem Int Ed, 2004, 43: 5812–5815

    Article  CAS  Google Scholar 

  115. Zhang S, Li H, Wang Z, Liu J, Zhang H, Wang B, Yang Z. Nanoscale, 2015, 7: 8495–8502

    Article  CAS  PubMed  Google Scholar 

  116. Huang Q, Weber WJ. Environ Sci Technol, 2005, 39: 6029–6036

    Article  CAS  PubMed  Google Scholar 

  117. Wan Y, Qi P, Zhang D, Wu J, Wang Y. Biosens Bioelectron, 2012, 33: 69–74

    Article  CAS  PubMed  Google Scholar 

  118. Wang C, Daimon H, Sun S. Nano Lett, 2009, 9: 1493–1496

    Article  CAS  PubMed  Google Scholar 

  119. Hao J, Zhang Z, Yang W, Lu B, Ke X, Zhang B, Tang J. J Mater Chem A, 2013, 1: 4352–4357

    Article  CAS  Google Scholar 

  120. Wang H, Li S, Si Y, Sun Z, Li S, Lin Y. J Mater Chem B, 2014, 2: 4442–4448

    Article  CAS  PubMed  Google Scholar 

  121. Dong YL, Zhang HG, Rahman ZU, Su L, Chen XJ, Hu J, Chen XG. Nanoscale, 2012, 4: 3969–3976

    Article  CAS  PubMed  Google Scholar 

  122. Kim MI, Kim MS, Woo MA, Ye Y, Kang KS, Lee J, Park HG. Nanoscale, 2014, 6: 1529–1536

    Article  CAS  PubMed  Google Scholar 

  123. Gollavelli G, Chang CC, Ling YC. ACS Sustain Chem Eng, 2013, 1: 462–472

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of Taiwan (MOST104-2113-M-007-008-MY3), and the Taiwan Tsing Hua University (Foxconn Company Scholarship).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linyin Yan or Yong-Chien Ling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Yan, L. & Ling, YC. The designing strategies of graphene-based peroxidase mimetic materials. Sci. China Chem. 61, 266–275 (2018). https://doi.org/10.1007/s11426-017-9127-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9127-y

Keywords

Navigation