Skip to main content
Log in

Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids)

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Nonaromatic amino acids are generally believed to be nonemissive, owing to their lack of apparently remarkable conjugation within individual molecules. Here we report the intrinsic visible emission of nonaromatic amino acids and poly(amino acids) in concentrated solutions and solid powders. This unique and widespread luminescent characteristic can be well rationalized by the clustering-triggered emission (CTE) mechanism, namely the clustering of nonconventional chromophores (i.e. amino, carbonyl, and hydroxyl) and subsequent electron cloud overlap with simultaneous conformation rigidification. Such CTE mechanism is further supported by the single crystal structure analysis, from which 3D through space electronic communications are uncovered. Besides prompt fluorescence, room temperature phosphorescence (RTP) is also detected from the solids. Moreover, persistent RTP is observed in the powders of exampled poly(amino acids) of ε-poly-L-lysine (ɛ-PLL) after ceasing UV irradiation. These results not only illustrate the feasibility of employing the building blocks of nonaromatic amino acids in the exploration of new luminescent biomolecules, but also provide significant implications for the emissions of peptides and proteins at aggregated or crystalline states. Meanwhile, they may also shed lights on further understanding of autofluorescence from biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saviotti ML, Galley WC. Proc Natl Acad Sci USA, 1974, 71: 4154–4158

    Article  CAS  Google Scholar 

  2. Vanderkooi JM, Calhoun DB, Englander SW. Science, 1987, 236: 568–569

    Article  CAS  Google Scholar 

  3. Papp S, Vanderkooi JM. Photochem Photobiol, 1989, 49: 775–784

    Article  CAS  Google Scholar 

  4. Lakowicz JR. Principles of Fluorescence Spectroscopy. 3rd Ed. New York: Springer, 2006

    Book  Google Scholar 

  5. Maki AH, Zuclich J. Top Curr Chem, 1975, 54: 115–163

    Article  CAS  Google Scholar 

  6. Homchaudhuri L, Swaminathan R. Chem Lett, 2001, 30: 844–845

    Article  Google Scholar 

  7. Homchaudhuri L, Swaminathan R. Bull Chem Soc Jpn, 2004, 77: 765–769

    Article  CAS  Google Scholar 

  8. Shukla A, Mukherjee S, Sharma S, Agrawal V, Radha Kishan KV, Guptasarma P. Archives Biochem Biophys, 2004, 428: 144–153

    Article  CAS  Google Scholar 

  9. Chan FTS, Kaminski Schierle GS, Kumita JR, Bertoncini CW, Dobson CM, Kaminski CF. Analyst, 2013, 138: 2156–2162

    Article  CAS  Google Scholar 

  10. Pinotsi D, Grisanti L, Mahou P, Gebauer R, Kaminski CF, Hassanali A, Kaminski Schierle GS. J Am Chem Soc, 2016, 138: 3046–3057

    Article  CAS  Google Scholar 

  11. Sharpe S, Simonetti K, Yau J, Walsh P. Biomacromolecules, 2011, 12: 1546–1555

    Article  CAS  Google Scholar 

  12. Del Mercato LL, Pompa PP, Maruccio G, Della Torre A, Sabella S, Tamburro AM, Cingolani R, Rinaldi R. Proc Natl Acad Sci USA, 2007, 104: 18019–18024

    Article  Google Scholar 

  13. Pinotsi D, Buell AK, Dobson CM, Kaminski Schierle GS, Kaminski CF. ChemBioChem, 2013, 14: 846–850

    Article  CAS  Google Scholar 

  14. Ye R, Liu Y, Zhang H, Su H, Zhang Y, Xu L, Hu R, Kwok RTK, Wong KS, Lam JWY, Goddard WA, Tang BZ. Polym Chem, 2017, 8: 1722–1727

    Article  CAS  Google Scholar 

  15. Gong YY, Tan YQ, Mei J, Zhang YR, Yuan WZ, Zhang YM, Sun JZ, Tang BZ. Sci China Chem, 2013, 56: 1178–1182

    Article  CAS  Google Scholar 

  16. Zhou Q, Cao B, Zhu C, Xu S, Gong Y, Yuan WZ, Zhang Y. Small, 2016, 12: 6586–6592

    Article  CAS  Google Scholar 

  17. Yuan WZ, Zhang Y. J Polym Sci Part A-Polym Chem, 2017, 55: 560–574

    Article  Google Scholar 

  18. Lee WI, Bae Y, Bard AJ. J Am Chem Soc, 2004, 126: 8358–8359

    Article  CAS  Google Scholar 

  19. Wang D, Imae T. J Am Chem Soc, 2004, 126: 13204–13205

    Article  CAS  Google Scholar 

  20. Zhu S, Song Y, Shao J, Zhao X, Yang B. Angew Chem Int Ed, 2015, 54: 14626–14637

    Article  CAS  Google Scholar 

  21. Sun M, Hong CY, Pan CY. J Am Chem Soc, 2012, 134: 20581–20584

    Article  CAS  Google Scholar 

  22. Pucci A, Rausa R, Ciardelli F. Macromol Chem Phys, 2008, 209: 900–906

    Article  CAS  Google Scholar 

  23. Zhao E, Lam JWY, Meng L, Hong Y, Deng H, Bai G, Huang X, Hao J, Tang BZ. Macromolecules, 2015, 48: 64–71

    Article  CAS  Google Scholar 

  24. Miao X, Liu T, Zhang C, Geng X, Meng Y, Li X. Phys Chem Chem Phys, 2016, 18: 4295–4299

    Article  CAS  Google Scholar 

  25. Yu W, Wu Y, Chen J, Duan X, Jiang XF, Qiu X, Li Y. RSC Adv, 2016, 6: 51257–51263

    Article  CAS  Google Scholar 

  26. Niu S, Yan H, Chen Z, Li S, Xu P, Zhi X. Polym Chem, 2016, 7: 3747–3755

    Article  CAS  Google Scholar 

  27. All experiments were conducted at room temperature unless specified. Though some concentrated nonaromatic amino acids are nonemissive at room temperature, they do become emissive when frozen by liquid nitrogen (Figure S1). And some relatively weakly emissive crystals (i.e. L-Leu, D-Leu, and D-Met) get more emissive upon cooling to 77 K (Figure S7)

  28. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    Article  CAS  Google Scholar 

  29. Fan Z, Sun L, Huang Y, Wang Y, Zhang M. Nat Nanotech, 2016, 11: 388–394

    Article  CAS  Google Scholar 

  30. Tested with the detector at nanosecond scale

  31. For the Perkin Elmer LS 55 fluorescence spectrometer, with a t d≥0.1 ms, all prompt fluorescence signals with nanoscale lifetime can be excluded

  32. Yuan WZ, Shen XY, Zhao H, Lam JWY, Tang L, Lu P, Wang C, Liu Y, Wang Z, Zheng Q, Sun JZ, Ma Y, Tang BZ. J Phys Chem C, 2010, 114: 6090–6099

    Article  CAS  Google Scholar 

  33. Wang CR, Gong YY, Yuan WZ, Zhang YM. Chin Chem Lett, 2016, 27: 1184–1192

    Article  CAS  Google Scholar 

  34. Hirata S, Totani K, Zhang J, Yamashita T, Kaji H, Marder SR, Watanabe T, Adachi C. Adv Funct Mater, 2013, 23: 3386–3397

    Article  CAS  Google Scholar 

  35. An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W. Nat Mater, 2015, 14: 685–690

    Article  CAS  Google Scholar 

  36. Yang Z, Mao Z, Zhang X, Ou D, Mu Y, Zhang Y, Zhao C, Liu S, Chi Z, Xu J, Wu YC, Lu PY, Lien A, Bryce MR. Angew Chem Int Ed, 2016, 55: 2181–2185

    Article  CAS  Google Scholar 

  37. Gong Y, Chen G, Peng Q, Yuan WZ, Xie Y, Li S, Zhang Y, Tang BZ. Adv Mater, 2015, 27: 6195–6201

    Article  CAS  Google Scholar 

  38. Li C, Tang X, Zhang L, Li C, Liu Z, Bo Z, Dong YQ, Tian YH, Dong Y, Tang BZ. Adv Opt Mater, 2015, 3: 1184–1190

    Article  CAS  Google Scholar 

  39. Xu S, Chen R, Zheng C, Huang W. Adv Mater, 2016, 28: 9920–9940

    Article  CAS  Google Scholar 

  40. Xie Y, Ge Y, Peng Q, Li C, Li Q, Li Z. Adv Mater, 2017, 29: 1606829

    Article  Google Scholar 

  41. Zhao W, He Z, Lam JWY, Peng Q, Ma H, Shuai Z, Bai G, Hao J, Tang BZ. Chem, 2016, 1: 592–602

    Article  CAS  Google Scholar 

  42. Wei J, Liang B, Duan R, Cheng Z, Li C, Zhou T, Yi Y, Wang Y. Angew Chem Int Ed, 2016, 55: 15589–15593

    Article  CAS  Google Scholar 

  43. Yan D. Sci China Chem, 2017, 60: 163–164

    Article  CAS  Google Scholar 

  44. He G, Torres Delgado W, Schatz DJ, Merten C, Mohammadpour A, Mayr L, Ferguson MJ, McDonald R, Brown A, Shankar K, Rivard E. Angew Chem Int Ed, 2014, 53: 4587–4591

    Article  CAS  Google Scholar 

  45. Chen H, Yao X, Ma X, Tian H. Adv Opt Mater, 2016, 4: 1397–1401

    Article  CAS  Google Scholar 

  46. Shimizu M, Kimura A, Sakaguchi H. Eur J Org Chem, 2016, 2016: 467–473

    Article  CAS  Google Scholar 

  47. Chen X, Xu C, Wang T, Zhou C, Du J, Wang Z, Xu H, Xie T, Bi G, Jiang J, Zhang X, Demas JN, Trindle CO, Luo Y, Zhang G. Angew Chem Int Ed, 2016, 55: 9872–9876

    Article  CAS  Google Scholar 

  48. Boldyreva EV, Kolesnik EN, Drebushchak TN, Ahsbahs H, Beukes JA, Weber H-P. Z Kristallogr, 2005, 220: 58–65

    CAS  Google Scholar 

  49. CCDC 1542778 contains the supplementary crystallographic data for L-Ile. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

  50. Previously, glutathione was reported to be nonluminescent (see Ref. [8]), our results, however, show it can be emissive under proper conditions. Detailed results will be reported later

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51473092), and the Shanghai Rising-Star Program (15QA1402500). The authors appreciate Ms Xiaoli Bao and Ms Lingling Li at the Instrumental Analysis Center of Shanghai Jiao Tong University for the single-crystal structure determination of L-Ile.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang Zhang Yuan or Yongming Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Luo, W., Ma, H. et al. Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci. China Chem. 61, 351–359 (2018). https://doi.org/10.1007/s11426-017-9114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9114-4

Keywords

Navigation