Skip to main content
Log in

Kinetics process of Tb(III)/Tb couple at liquid Zn electrode and thermodynamic properties of Tb-Zn alloys formation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical properties of rare-earth elements in the LiCl-KCl eutectic are important for the pyrometallurgical recycling process of spent nuclear fuels. In this work, the electrochemical properties of Tb (III)/Tb (0) couple were studied by the cyclic voltammetry (CV) at a liquid Zn pool electrode. The results showed that this electrochemical reaction is quasi-reversible with mixed reversible diffusion control and the charge transfer control. The diffusion coefficient of Tb (III) was determined to be in the order of ~10−5 cm2 s−1. Moreover, kinetic parameters, such as the standard rate constants (k s) and charge transfer coefficient (α) for the electroreduction of Tb (III) to Tb (0) at the liquid Zn electrode, were calculated by the Nicholson method at 873 K. Additionally, it was found that Tb-Zn intermetallic compounds were easily to be formed in the measurements. Hence, the reduction process of Tb (III)/Tb (0) couple on the Zn-coated Mo electrode was also studied to obtain more information of the Tb-Zn intermetallic compounds. Electrochemical signals stemming from various intermetallic compounds associated with TbZn12, Tb2Zn17, Tb13Zn58, Tb3Zn11, TbZn3, TbZn2 and TbZn, were observed. The thermodynamic data were thereafter estimated by applying the emf method at 823–923 K. The standard formation Gibbs energies and the standard equilibrium constant of each Tb-Zn intermetallic compounds were also calculated. Finally, enthalpies and entropies of formation and the apparent standard potentials of various Tb-Zn intermetallic compounds were also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang XL, Yuan LY, Wang YF, Li ZJ, Lan JH, Liu YL, Feng YX, Zhao YL, Chai ZF, Shi WQ. Sci China Chem, 2012, 55: 1705–1711

    Article  CAS  Google Scholar 

  2. Xiao CL, Wu QY, Wang CZ, Zhao YL, Chai ZF, Shi WQ. Sci China Chem, 2014, 57: 1439–1448

    Article  CAS  Google Scholar 

  3. Yuan LY, Sun M, Liao XH, Zhao YL, Chai ZF, Shi WQ. Sci China Chem, 2014, 57: 1432–1438

    Article  CAS  Google Scholar 

  4. Zhang Y, Lan J, Wu Q, Wang C, Bo T, Chai Z, Shi W. Sci China Chem, 2015, 58: 1891–1897

    Article  CAS  Google Scholar 

  5. Guo W, Nie C, Wang L, Li Z, Zhu L, Zhu L, Zhu Z, Shi W, Yuan L. Sci China Chem, 2016, 59: 629–636

    Article  CAS  Google Scholar 

  6. Luo J, Wang C, Lan J, Wu Q, Zhao Y, Chai Z, Nie C, Shi W. Sci China Chem, 2016, 59: 324–331

    Article  CAS  Google Scholar 

  7. Souček P, Malmbeck R, Mendes E, Nourry C, Sedmidubský D, Glatz JP. J Nucl Mater, 2009, 394: 26–33

    Article  Google Scholar 

  8. Konishi H, Nohira T, Ito Y. Electrochim Acta, 2003, 48: 563–568

    Article  CAS  Google Scholar 

  9. Cassayre L, Souček P, Mendes E, Malmbeck R, Nourry C, Eloirdi R, Glatz JP. J Nucl Mater, 2011, 414: 12–18

    Article  CAS  Google Scholar 

  10. Moriyama H, Yamana H, Nishikawa S, Miyashita Y, Moritani K, Mitsugashira T. J Nucl Mater, 1997, 247: 197–202

    Article  CAS  Google Scholar 

  11. Moriyama H, Yamana H, Nishikawa S, Shibata S, Wakayama N, Miyashita Y, Moritani K, Mitsugashira T. J Alloys Compd, 1998, 271–273: 587–591

    Article  Google Scholar 

  12. Osamu S, Koichi U, Takashi I, Yasuo A. Anal Sci, 2001, 17: i959–i962

    Google Scholar 

  13. Castrillejo Y, Bermejo MR, Arocas PD, Martínez AM, Barrado E. J Electroanal Chem, 2005, 579: 343–358

    Article  CAS  Google Scholar 

  14. Wang L, Liu YL, Liu K, Tang SL, Yuan LY, Lu T, Chai ZF, Shi WQ. J Electrochem Soc, 2015, 162: E179–E184

    Google Scholar 

  15. Zhou W, Liu YL, Liu K, Liu ZR, Yuan LY, Wang L, Feng YX, Chai ZF, Shi WQ. J Electrochem Soc, 2015, 162: D531–D539

    Google Scholar 

  16. Luo LX, Liu YL, Liu N, Wang L, Yuan LY, Chai ZF, Shi WQ. Electrochim Acta, 2016, 191: 1026–1036

    Article  CAS  Google Scholar 

  17. Liu YL, Ye GA, Liu K, Yuan LY, Chai ZF, Shi WQ. Electrochim Acta, 2015, 168: 206–215

    Article  CAS  Google Scholar 

  18. Liu YL, Yuan LY, Kui-Liu LY, Ye GA, Zhang ML, He H, Tang HB, Lin RS, Chai ZF, Shi WQ. Electrochim Acta, 2014, 120: 369–378

    Article  CAS  Google Scholar 

  19. Han W, Sheng Q, Zhang M, Li M, Sun T, Liu Y, Ye K, Yan Y, Wang Y. Metall Materi Trans B, 2014, 45: 929–935

    Article  CAS  Google Scholar 

  20. Castrillejo Y, Hernández P, Fernández R, Barrado E. Electrochim Acta, 2014, 147: 743–751

    Article  CAS  Google Scholar 

  21. Kim BY, Lee DH, Lee JY, Yun JI. Electrochem Commun, 2010, 12: 1005–1008

    Article  CAS  Google Scholar 

  22. Qiu G, Wang D, Jin X, Chen GZ. Electrochim Acta, 2006, 51: 5785–5793

    Article  CAS  Google Scholar 

  23. Qiu G, Wang D, Ma M, Jin X, Chen GZ. J Electroanal Chem, 2006, 589: 139–147

    Article  CAS  Google Scholar 

  24. Li M, Gu Q, Han W, Yan Y, Zhang M, Sun Y, Shi W. Electrochim Acta, 2015, 167: 139–146

    Article  CAS  Google Scholar 

  25. Shirai O, Iizuka M, Iwai T, Suzuki Y, Arai Y. J Electroanal Chem, 2000, 490: 31–36

    Article  CAS  Google Scholar 

  26. Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. NewYork: John Wiley, 1980

    Google Scholar 

  27. Nicholson RS. Anal Chem, 1965, 37: 1351–1355

    Article  CAS  Google Scholar 

  28. Tang H, Pesic B. J Nucl Mater, 2015, 458: 37–44

    Article  CAS  Google Scholar 

  29. Tang H, Pesic B. Electrochim Acta, 2014, 119: 120–130

    Article  CAS  Google Scholar 

  30. Kim TJ, Ahn DH, Woo S, Jung YJ. Int J Electrochem Sci, 2013, 8: 9180–9186

    CAS  Google Scholar 

  31. Kuznetsov SA, Hayashi H, Minato K, Gaune-Escard M. Electrochim Acta, 2006, 51: 2463–2470

    Article  CAS  Google Scholar 

  32. Lagrost C, Preda L, Volanschi E, Hapiot P. J Electroanal Chem, 2005, 583: 1–7

    Article  Google Scholar 

  33. Zhu Z, Pelton AD. J Alloys Compd, 2015, 641: 261–271

    Article  CAS  Google Scholar 

  34. Saccone A, Cardinale AM, Delfino S, Ferro R. Z Metallkd, 2005, 96: 1369–1379

    Article  CAS  Google Scholar 

  35. Bermejo MR, Gómez J, Martínez AM, Barrado E, Castrillejo Y. Electrochim Acta, 2008, 53: 5106–5112

    Article  CAS  Google Scholar 

  36. Luo LX, Liu YL, Liu N, Liu K, Yuan LY, Chai ZF, Shi WQ. RSC Adv, 2015, 5: 69134–69142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (91426302, 91226201, 91326202), and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA030104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiQun Shi.

Electronic supplementary material

11426_2016_9007_MOESM1_ESM.docx

Study on kinetics process of Tb(III)/Tb couple at liquid electrode and thermodynamic properties of Tb-Zn alloys formation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Liu, Y., Liu, N. et al. Kinetics process of Tb(III)/Tb couple at liquid Zn electrode and thermodynamic properties of Tb-Zn alloys formation. Sci. China Chem. 60, 813–821 (2017). https://doi.org/10.1007/s11426-016-9007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-9007-0

Keywords

Navigation