Skip to main content
Log in

Electrochemical reduction of CO2 to CO using graphene oxide/carbon nanotube electrode in ionic liquid/acetonitrile system

  • Articles
  • SPECIAL TOPIC · Ionic Liquids: Energy, Materials & Environment
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical reduction of CO2 to CO is an interesting topic. In this work, we prepared metal-free electrodes by depositing graphene oxide (GO), multi-walled carbon nanotube (MWCNT), and GO/MWCNT composites on carbon paper (CP) using electrophoretic deposition (EPD) method. The electrodes were characterized by different methods, such as X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrochemical reduction of CO2 to CO was conducted on the electrodes in 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4)/acetonitrile (MeCN) electrolyte, and the composition of the electrolyte influenced the reaction significantly. It was demonstrated that GO/MWCNT-CP electrode was very effective for the reaction in IL (90 wt%)/MeCN binary mixture, the Faradaic efficiency of CO and current density were even higher than those on Au and Ag electrodes in the same electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao JL, Liu YY, Hong F, Zhang JJ. Chem Soc Rev, 2014, 43: 631–675

    Article  CAS  Google Scholar 

  2. Costentin C, Robert M, Savéant JM. Chem Soc Rev, 2013, 42: 2423–2436

    Article  CAS  Google Scholar 

  3. Rees NV, Compton RG. Energy Environ Sci, 2011, 4: 403–408

    Article  CAS  Google Scholar 

  4. He MY, Sun YH, Han BX. Angew Chem Int Ed, 2013, 52: 9620–9633

    Article  CAS  Google Scholar 

  5. Takeshita T, Yamaji K. Energy Policy, 2008, 36: 2773–2784

    Article  Google Scholar 

  6. VennestrØm PNR, Osmundsen CM, Christensen CH, Tarrning E. Angew Chem Int Ed, 2011, 50: 10502–10509

    Article  Google Scholar 

  7. Mistry H, Reske R, Zeng ZH, Zhao ZJ, Greeley J, Strasser P, Cuenya R. J Am Chem Soc, 2014, 136: 16473–16476

    Article  CAS  Google Scholar 

  8. Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao F. Nat Commun, 2014, 5: 3242

    Google Scholar 

  9. Wu JJ, Yadav RM, Liu MJ, Sharma PP, Tiwary CS, Ma LL, Zou XL, Zhou XD, Yakobson BI, Lou J, Ajayan PM. ACS Nano, 2015, 9: 5364–5371

    Article  CAS  Google Scholar 

  10. Zhou F, Liu SM, Yang BQ, Wang PX, Alshammari AS, Deng YQ. Electrochem Commun, 2015, 55: 43–46

    Article  CAS  Google Scholar 

  11. Di Meglio JL, Rosenthal J. J Am Chem Soc, 2013, 135: 8798–8801

    Article  Google Scholar 

  12. Medina-Ramos J, Di Meglio JL, Rosenthal J. J Am Chem Soc, 2014, 136: 8361–8367

    Article  CAS  Google Scholar 

  13. Asadi M, Kumar B, Behranginia A, Rosen BA, Baskin A, Repnin N, Pisasale D, Phillips P, Zhu W, Haasch R, Klie RF, Král P, Abiade J, Salehi-Khojin A. Nat Commun, 2014, 5: 4470

    Article  CAS  Google Scholar 

  14. Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen BA, Haasch R, Abiade J, Yarin A, Salehi-khojin A. Nat Commun, 2013, 4: 2819

    Google Scholar 

  15. Dong K, Zhang SJ, Wang Q. Sci China Chem, 2015, 58: 495–500

    Article  CAS  Google Scholar 

  16. Ning H, Hou MQ, Mei QQ, Liu YH, Yang DZ, Han BX. Sci China Chem, 2012, 55: 1509–1518

    Article  CAS  Google Scholar 

  17. Rogers RD, Zhang SJ, Wang JJ. Sci China Chem, 2012, 55: 1475–1477

    Article  CAS  Google Scholar 

  18. MacFarlane DR, Forsyth M, Howlett PC, Pringle JM, Sun JZ, Annat G, Neil W, Izgorodina EI. Acc Chem Res, 2007, 40: 1165–1173

    Article  CAS  Google Scholar 

  19. Pan X, Wang M, Fang XQ, Zhang CN, Huo ZP, Dai SY. Sci China Chem, 2013, 56: 1463–1469

    Article  CAS  Google Scholar 

  20. Yan Y, Yin YX, Guo YG, Wan LJ. Sci China Chem, 2014, 57: 1564–1569

    Article  CAS  Google Scholar 

  21. Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI. Science, 334: 643–644

  22. Balasubramanian K, Burghard M. Small, 2005, 1: 180–192

    Article  CAS  Google Scholar 

  23. Tang LH, Wang Y, Li YM, Feng HB, Lu J, Li JH. Adv Funct Mater, 2009, 19: 2782–2789

    Article  CAS  Google Scholar 

  24. Eda G, Fanchini G, Chhowalla M. Nat Nano, 2008, 3: 270–274

    Article  CAS  Google Scholar 

  25. Sun XF, Tian QQ, Xue ZM, Zhang YW, Mu TC. RSC Adv, 2014, 4: 30282–30291

    Article  CAS  Google Scholar 

  26. Li YG, Wu YY. J Am Chem Soc, 2009, 131: 5851–5857

    Article  CAS  Google Scholar 

  27. Zhu QG, Sujari ANA, Ab Ghani S. Electrochimica Acta, 2012, 65: 257–265

    Article  Google Scholar 

  28. Kang XC, Zhu QG, Sun XF, Hu JY, Zhang JL, Liu ZM, Han BX. Chem Sci, 2016, 7: 266–273

    Article  CAS  Google Scholar 

  29. Guo CX, Lei Y, Li CM. Electroanalysis, 2011, 23: 885–893

    Article  CAS  Google Scholar 

  30. Ren D, Deng YL, Handoko AD, Chen CS, Malkhandi S, Yeo BS. ACS Catal, 2015, 5: 2814–2821

    Article  CAS  Google Scholar 

  31. Wang LL, Chen YW, Chen T, Que WX, Sun Z. Mater Lett, 2007, 61: 1265–1269

    Article  CAS  Google Scholar 

  32. Thomas BJC, Boccaccini AR, Shaffer MSP. J Am Chem Soc, 2005, 88: 980–982

    CAS  Google Scholar 

  33. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I. J Electron Spectrosc Relat Phenom, 2014, 195: 145–154

    Article  CAS  Google Scholar 

  34. Wepasnick KA, Smith BA, Bitter JL, Howard Fairbrother D. Anal Bioanal Chem, 2010, 396: 1003–1014

    Article  CAS  Google Scholar 

  35. Cadena C, Anthony JK, Shah JK, Morrow TI, Brennecke JF, Maginn EJ. J Am Chem Soc, 2004, 126: 5300–5308

    Article  CAS  Google Scholar 

  36. Ramdin M, de Loos TW, Vlugt TJH. Ind Eng Chem Res, 2012, 51: 8149–8177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buxing Han.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Ma, J., Kang, X. et al. Electrochemical reduction of CO2 to CO using graphene oxide/carbon nanotube electrode in ionic liquid/acetonitrile system. Sci. China Chem. 59, 551–556 (2016). https://doi.org/10.1007/s11426-016-5584-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-5584-1

Keywords

Navigation