Skip to main content
Log in

Pebax®/TSIL blend thin film composite membranes for CO2 separation

  • Articles
  • SPECIAL TOPIC · Ionic Liquids: Energy, Materials & Environment
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this study a thin film composite (TFC) membrane with a Pebax/Task-specific ionic liquid (TSIL) blend selective layer was prepared. Defect-free Pebax/TSIL layers were coated successfully on a polysulfone ultrafiltration porous support with a polydimethylsiloxane (PDMS) gutter layer. Different parameters in the membrane preparation (e.g. concentration, coating time) were investigated and optimized. The morphology of the membranes was studied by scanning electron microscopy (SEM), while the thermal properties and chemical structures of the membrane materials were investigated by thermo-gravimetric analyzer (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The CO2 separation performance of the membrane was evaluated using a mixed gas permeation test. Experimental results show that the incorporation of TSIL into the Pebax matrix can significantly increase both CO2 permeance and CO2/N2 selectivity. With the presence of water vapor, the membrane exhibits the best CO2/N2 selectivity at a relative humidity of around 75%, where a CO2 permeance of around 500 GPU and a CO2/N2 selectivity of 46 were documented. A further increase in the relative humidity resulted in higher CO2 permeance but decreased CO2/N2 selectivity. Experiments also show that CO2 permeance decreases with a CO2 partial pressure increase, which is considered a characteristic in facilitated transport membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernandez JR, Ferrari MC, Gross R, Hallett JP, Haszeldine RS, Heptonstall P, Lyngfelt A, Makuch Z, Mangano E, Porter RTJ, Pourkashanian M, Rochelle GT, Shah N, Yao JG, Fennell PS. Energ Environ Sci, 2014, 7: 130–189

    Article  CAS  Google Scholar 

  2. Kundu PK, Chakma A, Feng XS. Int J Greenh Gas Con, 2014, 28: 248–256

    Article  CAS  Google Scholar 

  3. Luis P, van der Bruggen B. Greenh Gases, 2013, 3: 318–337

    Article  CAS  Google Scholar 

  4. Pera-Titus M. Chem Rev, 2014, 114: 1413–1492

    Article  CAS  Google Scholar 

  5. Budzianowski WM. Int J Global Warm, 2015, 7: 184–225

    Article  Google Scholar 

  6. Mondal MK, Balsora HK, Varshney P. Energy, 2012, 46: 431–441

    Article  CAS  Google Scholar 

  7. Noble RD, Gin DL. J Membrane Sci, 2011, 369: 1–4

    Article  CAS  Google Scholar 

  8. Lei ZG, Dai CN, Chen BH. Chem Rev, 2014, 114: 1289–1326

    Article  CAS  Google Scholar 

  9. Dai Z, Noble RD, Gin DL, Zhang X, Deng L. J Membrane Sci, 2016, 497: 1–20

    Article  CAS  Google Scholar 

  10. Uchytil P, Schauer J, Petrychkovych R, Setnickova K, Suen SY. J Membrane Sci, 2011, 383: 262–271

    Article  CAS  Google Scholar 

  11. Nafisi V, Hagg MB. J Membrane Sci, 2014, 459: 244–255

    Article  CAS  Google Scholar 

  12. Yave W, Car A, Funari SS, Nunes SP, Peinemann KV. Macromolecules, 2010, 43: 326–333

    Article  CAS  Google Scholar 

  13. Car A, Stropnik C, Yave W, Peinemann KV. J Membrane Sci, 2008, 307: 88–95

    Article  CAS  Google Scholar 

  14. Bernardo P, Jansen JC, Bazzarelli F, Tasselli F, Fuoco A, Friess K, Izak P, Jarmarova V, Kacirkova M, Clarizia G. Sep Purif Technol, 2012, 97: 73–82

    Article  CAS  Google Scholar 

  15. Rabiee H, Soltanieh M, Mousavi SA, Ghadimi A. J Membrane Sci, 2014, 469: 43–58

    Article  CAS  Google Scholar 

  16. Baker RW, Low BT. Macromolecules, 2014, 47: 6999–7013

    Article  CAS  Google Scholar 

  17. Xia JZ, Chung TS, Paul DR. J Membrane Sci, 2014, 450: 457–468

    Article  CAS  Google Scholar 

  18. Shi YT, Burns CM, Feng XS. J Membrane Sci, 2006, 282: 115–123

    Article  CAS  Google Scholar 

  19. Adzima BJ, Venna SR, Klara SS, He HK, Zhong MJ, Luebke DR, Mauter MS, Matyjaszewski K, Nulwala HB. J Mater Chem A, 2014, 2: 7967–7972

    Article  CAS  Google Scholar 

  20. Zhou JS Mok MM, Cowan MG, McDanel WM, Carlisle TK, Gin DL, Noble RD. Ind Eng Chem Res, 2014, 53: 20064–20067

    Article  CAS  Google Scholar 

  21. Ren SH, Hou YC, Wu WZ, Tian SD, Liu WN. Rsc Adv, 2012, 2: 2504–2507

    Article  CAS  Google Scholar 

  22. Chen HZ, Thong ZW, Li P, Chung TS. Int J Hydrogen Energ, 2014, 39: 5043–5053

    Article  CAS  Google Scholar 

  23. Beuscher U, Gooding CH. J Membrane Sci, 1999, 152: 99–116

    Article  CAS  Google Scholar 

  24. Li SC, Wang Z, Zhang CX, Wang MM, Yuan F, Wang JX, Wang SC. J Membrane Sci, 2013, 436: 121–131

    Article  CAS  Google Scholar 

  25. Zhao YN, Ho WSW. J Membrane Sci, 2012, 415: 132–138

    Article  Google Scholar 

  26. Maleki M, Reyssat M, Restagno F, Quere D, Clanet C. J Colloid Interf Sci, 2011, 354: 359–363

    Article  CAS  Google Scholar 

  27. Bondar VI, Freeman BD, Pinnau I. J Polym Sci Pol Phys, 1999, 37: 2463–2475

    Article  CAS  Google Scholar 

  28. Armstrong S, Freeman B, Hiltner A, Baer E. Polymer, 2012, 53: 1383–1392

    Article  CAS  Google Scholar 

  29. Stuart BH. Infrared Spectroscopy: Fundamentals and Applications. Weinheim: John Wiley & Sons, Ltd., 2005

  30. Sridhar S, Suryamurali R, Smitha B, Aminabhavi TM. Colloid Surface A, 2007, 297: 267–274

    Article  CAS  Google Scholar 

  31. Le NL, Wang Y, Chung TS. J Membrane Sci, 2011, 379: 174–183

    Article  CAS  Google Scholar 

  32. Sridhar S, Kalyani S, Ravikumar YVL, Muralikrishna TSVN. Sep Sci Technol, 2010, 45: 322–330

    Article  CAS  Google Scholar 

  33. Deng LY, Hagg MB. J Membrane Sci, 2010, 363: 295–301

    Article  CAS  Google Scholar 

  34. Deng LY, Hagg MB. Int J Greenh Gas Con, 2014, 26: 127–134

    Article  CAS  Google Scholar 

  35. Deng L, Kim TJ, Sandru M, Hägg MB. PVA/PVAm blend FSC membrane for natural gas sweetening. Secondary PVA/PVAm blend FSC membrane for natural gas sweetening. In: Proceedings of the 1st Annual Gas Processing Symposium. Amsterdam: Elsevier, 2009. 247–255

    Chapter  Google Scholar 

  36. Deng L, Hägg MB. Ind Eng Chem Res, 2015, 54: 11139–11150

    Article  CAS  Google Scholar 

  37. Deng L, Hägg MB. J Membrane Sci, 2010, 363: 295–301

    Article  CAS  Google Scholar 

  38. Sandru M, Haukebø SH, Hägg MB. J Membrane Sci, 2010, 346: 172–186

    Article  CAS  Google Scholar 

  39. Deng LY, Kim TJ, Hagg MB. J Membrane Sci, 2009, 340: 154–163

    Article  CAS  Google Scholar 

  40. Ansaloni L, Zhao YN, Jung BT, Ramasubramanian K, Baschetti MG, Ho WSW. J Membrane Sci, 2015, 490: 18–28

    Article  CAS  Google Scholar 

  41. Liao JY, Wang Z, Gao CY, Li SC, Qiao ZH, Wang M, Zhao S, Xie XM, Wang JX, Wang SC. Chem Sci, 2014, 5: 2843–2849

    Article  CAS  Google Scholar 

  42. Luangrujiwong P, Sungpet A, Jiraratananon R, Way JD. J Membrane Sci, 2005, 250: 277–282

    Article  CAS  Google Scholar 

  43. Qiao ZH, Wang Z, Yuan SJ, Wang JX, Wang SC. J Membrane Sci, 2015, 475: 290–302

    Article  CAS  Google Scholar 

  44. Saeed M, Deng LY. J Membrane Sci, 2015, 494: 196–204

    Article  CAS  Google Scholar 

  45. Deng L, Kim TJ, Hagg MB. Desalination, 2006, 199: 523–524

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyuan Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Bai, L., Hval, K.N. et al. Pebax®/TSIL blend thin film composite membranes for CO2 separation. Sci. China Chem. 59, 538–546 (2016). https://doi.org/10.1007/s11426-016-5574-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-5574-3

Keywords

Navigation