Skip to main content
Log in

The aptamers generated from HepG2 cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Liver cancer, as the second cause of cancer death all around the world, resulted in a series of chronic liver diseases. More than 80% of the patients cannot receive effective treatment because of their advanced disease or poor liver function. It is time to improve early clinical diagnosis and find optimal therapeutic treatments. As the tumor cells behave differently from the cell-surface molecules, it is necessary to find a highly specific probe. The aptamers, known as “chemical antibodies”, can bind to their target molecules with high affinity and high specificity. The apatmers were obtained by Cell-SELEX, which was aimed at finding the aptamers against whole living cells. In the article, after 19 selections, the ssDNA pool was cloned and sequenced. After that, six aptamers were obtained, named apt_A to apt_F. By incubating the aptamers with different cells, except apt_E, the other aptamers showed high specificity. As for apt_E, which showed high affinity to several cancer cells, was a potential probe for the common protein presented by several different cancer cells. The equilibrium dissociation constants (Kd) were evaluated by measuring the flow cytometry signal that characterized the binding ability of aptamers to the target cells at a series of concentrations ranging from 46.3(4.5) nM to 199.4(44.2) nM, which exposed the high binding affinities of these aptamers. The research in the confocal fluorescence images further confirmed the specificity of these aptamers and the fact that the aptamers were combined with the targets on the cell-surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. CA-Cancer J Clin, 2015, 65: 5–29

    Article  Google Scholar 

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. CA-Cancer J Clin, 2015, 65: 87–108

    Article  Google Scholar 

  3. Tsukuma H, Hiyama T, Tanaka S, Nakao M, Yabuuchi T, Kitamura T, Nakanishi K, Fujimoto I, Inoue A, Yamazaki H, Kawashima T. N Engl J Med, 1993, 328: 1797–1801

    Article  CAS  Google Scholar 

  4. Smith BD, Jorgensen C, Zibbell JE, Beckett GA. Clin Infect Disease, 2012, 55: S49–S53

    Article  Google Scholar 

  5. Graf D, Vallböhmer D, Knoefel WT, Kröpil P, Antoch G, Sagir A, Häussinger D. Eur J Internal Med, 2014, 25: 430–437

    Article  Google Scholar 

  6. Lencioni R, Crocetti L. Radiology, 2012, 262: 43–58

    Article  Google Scholar 

  7. Brown S R, Martin R C G. Minerva Chir, 2012, 67: 297–308

    Google Scholar 

  8. Zhang W, Yu Y, Fang Y, Wang Y, Cui Y, Shen K, Liu T. Clin Transl Oncol, 2015, 17: 888–894

    Article  CAS  Google Scholar 

  9. Dueland S, Guren TK, Hagness M, Glimelius B, Line PD, Pfeiffer P, Foss A, Tveit KM. Ann Surg, 2015, 261: 956–960

    Article  Google Scholar 

  10. Rickenbacher A, DeOliveira ML, Tian Y, Jang JH, Riener MO, Graf R, Moritz W, Clavien PA. Liver Int, 2011, 31: 313–321

    Article  CAS  Google Scholar 

  11. Wang Y, Zhang W, Qian S, Liu R, Kan Z, Wang JH. J Int Med Res, 2012, 40: 1141–1148

    Article  CAS  Google Scholar 

  12. Zhang Y, Li Q, Wang J, Cheng F, Huang X, Cheng Y, Wang K. Cancer Lett, 2016, 377: 117–125

    Article  CAS  Google Scholar 

  13. Shan B, Dong M, Tang H, Wang N, Zhang J, Yan C Q, Jiao X C, Zhang H L, Wang C. Oncol Lett, 2014, 8: 345–350

    CAS  Google Scholar 

  14. Liu M, Li Z, Yang J, Jiang Y, Chen Z, Ali Z, He N, Wang Z. Cell Prolif, 2016, 49: 409–420

    Article  Google Scholar 

  15. Bunka DHJ, Stockley PG. Nat Rev Micro, 2006, 4: 588–596

    Article  CAS  Google Scholar 

  16. Xi Z, Huang R, Deng Y, He N. J Biomed Nanotechnol, 2014, 10: 3043–3062

    Article  CAS  Google Scholar 

  17. Romig TS, Bell C, Drolet DW. J Chromatogr B-Biomed Sci Appl, 1999, 731: 275–284

    Article  CAS  Google Scholar 

  18. Kopylov AM. Mol Biol, 2000, 34: 940–954

    Article  CAS  Google Scholar 

  19. Li M, Zhou X, Ding W, Guo S, Wu N. Biosens Bioelectron, 2013, 41: 889–893

    Article  Google Scholar 

  20. Wang RE, Zhang Y, Cai J, Cai W, Gao T. Curr Med Chem, 2011, 18: 4175–4184

    Article  CAS  Google Scholar 

  21. Yan L, Chang YN, Yin W, Tian G, Zhou L, Liu X, Xing G, Zhao L, Gu Z, Zhao Y. Biomater Sci, 2014, 2: 1412–1418

    Article  CAS  Google Scholar 

  22. Sung T C, Chen W Y, Shah P, Chen C S. Sci Rep, 2016, 6: 20369

    Article  Google Scholar 

  23. Lao YH, Chi CW, Friedrich SM, Peck K, Wang TH, Leong KW, Chen LC. ACS Appl Mater Interfaces, 2016, 8: 12048–12055

    Article  CAS  Google Scholar 

  24. Zhou ZM, Feng Z, Zhou J, Fang BY, Ma ZY, Liu B, Zhao YD, Hu XB. Sensor Actuat B-Chem, 2015, 210: 158–164

    Article  CAS  Google Scholar 

  25. Wang YX, Ye ZZ, Ying YB. Chin Sci Bull, 2013, 58: 2938–2943

    Article  CAS  Google Scholar 

  26. Rockey WM, Huang L, Kloepping KC, Baumhover NJ, Giangrande PH, Schultz MK. Bioorg Medicinal Chem, 2011, 19: 4080–4090

    Article  CAS  Google Scholar 

  27. Kang ST, Luo YL, Huang YF, Yeh CK. IEEE Int Ultrason Symp, 2012: 1866–1868

    Google Scholar 

  28. Medley CD, Bamrungsap S, Tan W, Smith JE. Anal Chem, 2011, 83: 727–734

    Article  CAS  Google Scholar 

  29. Kim D, Jeong YY, Jon S. ACS Nano, 2010, 4: 3689–3696

    Article  CAS  Google Scholar 

  30. Kong RM, Chen Z, Ye M, Zhang XB, Tan WH. Sci China Chem, 2011, 54: 1218–1226

    Article  CAS  Google Scholar 

  31. Ma F, Jia LJ, Zhang Y, Sun B, Qi HL, Gao Q, Zhang CX. Sci China Chem, 2011, 54: 1357–1364

    Article  CAS  Google Scholar 

  32. Xi Z, Huang R, Li Z, He N, Wang T, Su E, Deng Y. ACS Appl Mater Interfaces, 2015, 7: 11215–11223

    Article  CAS  Google Scholar 

  33. Xi Z, Zheng B, Wang C. Nanosci Nanotechnol Lett, 2016, 8: 1061–1066

    Article  Google Scholar 

  34. Salimi A, Khezrian S, Hallaj R, Vaziry A. Anal Biochem, 2014, 466: 89–97

    Article  CAS  Google Scholar 

  35. Kavosi B, Salimi A, Hallaj R, Moradi F. Biosens Bioelectron, 2015, 74: 915–923

    Article  CAS  Google Scholar 

  36. Subramanian N, Raghunathan V, Kanwar J R, Kanwar R K, Elchuri S V, Khetan V, Krishnakumar S. Mol Vis, 2012, 18: 2783–2795

    CAS  Google Scholar 

  37. Wang RW, Zhu G, Mei L, Xie Y, Ma H, Ye M, Qing FL, Tan W. J Am Chem Soc, 2014, 136: 2731–2734

    Article  CAS  Google Scholar 

  38. Zhang Z, Ali MM, Eckert MA, Kang DK, Chen YY, Sender LS, Fruman DA, Zhao W. Biomaterials, 2013, 34: 9728–9735

    Article  CAS  Google Scholar 

  39. Shin SW, Song WC, Kim AR, Cho SW, Kim DI, Um SH. Biomater Sci, 2014, 2: 76–83

    Article  CAS  Google Scholar 

  40. Sun W, Gu Z. Biomater Sci, 2015, 3: 1018–1024

    Article  CAS  Google Scholar 

  41. Huang R, Xi Z, He N. Sci China Chem, 2015, 58: 1122–1130

    Article  CAS  Google Scholar 

  42. Berezhnoy A, Brenneman R, Bajgelman M, Seales D, Gilboa E. Mol Ther-Nucl Acids, 2012, 1: e51

    Article  Google Scholar 

  43. Subramanian N, Kanwar JR, Athalya PK, Janakiraman N, Khetan V, Kanwar RK, Eluchuri S, Krishnakumar S. J Biomed Sci, 2015, 22: 4

    Article  CAS  Google Scholar 

  44. Mascini M. Anal Bioanal Chem, 2008, 390: 987–988

    Article  CAS  Google Scholar 

  45. Dua P, Kim S, Lee DK. Methods, 2011, 54: 215–225

    Article  CAS  Google Scholar 

  46. Guo KT, Ziemer G, Paul A, Wendel HP. Int J Mol Sci, 2008, 9: 668–678

    Article  CAS  Google Scholar 

  47. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W. Proc Natl Acad Sci USA, 2006, 103: 11838–11843

    Article  CAS  Google Scholar 

  48. Zhao J, Lee SH, Huss M, Holme P. Sci Rep, 2013, 3: 1583

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (61471168, 61571187, 61301043, 61527806), the China Postdoctoral Science Foundation (2016T90403) and the Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province [(2013) 448].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Deng or Nongyue He.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Chen, Z., Liu, M. et al. The aptamers generated from HepG2 cells. Sci. China Chem. 60, 786–792 (2017). https://doi.org/10.1007/s11426-016-0491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0491-7

Keywords

Navigation