Skip to main content
Log in

Electrogenerated chemiluminescence aptasensor for thrombin incorporating poly(pyrrole-co-pyrrole propylic acid) nanoparticles loaded with aptamer and ruthenium complex

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel electrogenerated chemiluminescence (ECL) aptasensor for highly sensitive detection of thrombin was developed on the basis of poly(pyrrole-co-pyrrole propylic acid) nanoparticles loaded with aptamer and ruthenium complex. Thrombin binding aptamers served as the molecular recognition elements and ruthenium bis(2,2′-bipyridine) (2,2′-bipyridine-4,4′-dicarboxylic acid)-ethylenediamine (Ru1) was used as an ECL signal complex. Novel electroactive polymers poly(pyrrole-co-pyrrole propylic acid) nanoparticles (Ppy-pa NPs) were synthesized by a simple alcohol-assisted microemulsion polymerization. Ru1-Ppy-pa NPs were synthesized by covalently coupling Ru1 with the Ppy-pa NPs. Ppy-pa NPs and Ru1-Ppy-pa NPs were characterized using a fourier transform infrared spectrometer, super-conducting fourier digital NMR spectrometer, and transmission electron microscope. One ECL chemical sensor fabricated by immobilizing the Ru1-Ppy-pa NPs on PIGE was developed for the determination of TprA with a high sensitivity and stability. The ECL aptasensor was fabricated by covalently coupling the thrombin binding aptamer-I (TBA-I) onto the surface of the paraffin-impregnated graphite electrode, which had been covalently modified with a monolayer of 4-aminobenzene sulfonic acid via electrochemical oxidations, for capturing thrombin onto the electrode and then the TBA-II labeled with Ru1-Ppy-pa NPs was bound with epitope of thrombin. The ECL aptasensor showed an extremely low detection limit of 3.0×l0−16 mol/L for thrombin and a good selectivity. This work demonstrated that using Ppy-pa NPs as a carrier of ruthenium complex and molecular recognition element was a promising approach for the fabrication of ECL biosensor with high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner APF. Biosensors—Sense and sensitivity. Science, 2000, 290: 1315–1317

    Article  CAS  Google Scholar 

  2. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346: 818–822

    Article  CAS  Google Scholar 

  3. Michael L, Petersen B, Wolf H, Prohaska E. An aptamer-based quartz crystal protein biosensor. Anal Chem, 2002, 74: 4488–4495

    Article  Google Scholar 

  4. Lee SJ, Youn BS, Park JW, Niazi JH, Kim YS, Gu MB. A ssDNA aptamer-based SPR biosensor for the detection of RBP4 for the early diagnosis of type 2 diabetes. Anal Chem, 2008, 80: 2867–2873

    Article  CAS  Google Scholar 

  5. Xu WC, Lu Y. Label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence. Anal Chem, 2010, 82: 574–578

    Article  CAS  Google Scholar 

  6. Ding C, Ge Y, Lin JM. Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles. Biosens Bioelectron, 2010, 25: 1290–1294

    Article  CAS  Google Scholar 

  7. Liu DY, Xin YY, He XW, Yin XB. A sensitive, non-damaging electrochemiluminescent aptasensor via a low potential approach at DNA-modified gold electrodes. Analyst, 2011, 136: 479–485

    Article  CAS  Google Scholar 

  8. Liu JW, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed, 2006, 45: 90–94

    Article  CAS  Google Scholar 

  9. Miao WJ. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev, 2008, 108: 2506–2553

    Article  CAS  Google Scholar 

  10. Huang H, Jie G, Cui R, Zhu JJ. DNA aptamer-based detection of lysozyme by an electrochemiluminescence assay coupled to quantum dots. Electrochem Commun, 2009, 11: 816–818

    Article  CAS  Google Scholar 

  11. Huang H, Zhu JJ. DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Biosens Bioelectron, 2009, 25: 927–930

    Article  CAS  Google Scholar 

  12. Wu ZS, Zhang SB, Zhou H, Shen GL, Yu RQ. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification. Anal Chem, 2010, 82: 2221–2227

    Article  CAS  Google Scholar 

  13. Wei J, Wu BY. Optimization detection of plant pathogenic bacteria by electrochemiluminescence polymerase chain reaction method. Sens Actuators B, 2009, 139: 429–434

    Article  Google Scholar 

  14. Alfonta L, Bardea A, Khersonsky O, Katz E, Willner I. Chronopotentiometry and faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: Routes for enzyme sensors, immunosensors and DNA sensors. Biosens Bioelectron, 2001, 16: 675–687

    Article  CAS  Google Scholar 

  15. Zhu DB, Tang YB, Xing D, Chen WR. PCR-Free quantitative detection of genetically modified organism from raw materials. an electrochemiluminescence-based bio bar code method. Anal Chem, 2008, 80: 3566–3571

    CAS  Google Scholar 

  16. Qi HL, Zhang CX. Homogeneous electrogenerated chemiluminescence immunoassay for the determination of digoxin. Anal Chim Acta, 2004, 501: 31–35

    Article  CAS  Google Scholar 

  17. Qi HL, Pen YG, Gao Q, Zhang CX. Applications of nanomaterials in electrogenerated chemiluminescence biosensors. Sensors, 2009, 9: 674–695

    Article  CAS  Google Scholar 

  18. Miao W, Bard AJ. Electrogenerated chemiluminescence. 77. DNA hybridization detection at high amplification with [Ru(bpy)3]2+-containing microspheres. Anal Chem, 2004, 76: 5379–5386

    Article  CAS  Google Scholar 

  19. Yang X, Yuan R, Chai Y, Zhuo Y, Mao L, Yuan S. Ru(bpy) 2+3 -doped silica nanoparticles labeling for a sandwich-type electrochemiluminescence immunosensor. Biosens Bioelectron, 2010, 25: 1851–1855

    Article  CAS  Google Scholar 

  20. Li Y, Qi HL, Gao Q, Yang J, Zhang CX. Nanomaterial-amplified “signal off/on” electrogenerated chemiluminescence aptasensors for the detection of thrombin. Biosens Bioelectron, 2010 26: 754–759

    Article  CAS  Google Scholar 

  21. Ranganthan S, Steidal I, Anariba F. Covalently bonded organic monolayers on a carbon substrate: a new paradigm for molecular electronics. Nano Lett, 2001, 1: 491–494

    Article  Google Scholar 

  22. Martín R, Jiménez L, Alvaro M, Scaiano JC, Garcia H. Two-photon chemistry in ruthenium 2,2′-bipyridyl-functionalized single-wall carbon nanotubes. Chem Eur J, 2010, 116: 7282–7292

    Article  Google Scholar 

  23. Zhang XT, Zhang J, Song WH, Liu ZF. Controllable synthesis of conducting polypyrrole nanostructures. J Phys Chem B, 2006, 110: 1158–1165

    Article  CAS  Google Scholar 

  24. Li Y, Qi HL, Fang F, Zhang CX. Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon nanotubes loaded with tris (2, 2′-bipyridyl) ruthenium derivative tags. Talanta, 2007, 72: 1704–1709

    Article  CAS  Google Scholar 

  25. Liu Y, Chu Y, Yang LL. Adjusting the inner-struture of polypyrrole nanoparticles through microemulsion polymerization. Materials Chemistry and Physics, 2006, 98: 304–308

    Article  CAS  Google Scholar 

  26. Foulds NC, Lowe CR. Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers. Anal Chem, 1988, 60: 2473–2478

    Article  CAS  Google Scholar 

  27. Tao Y, Lin ZJ, Chen XM, Huang XL, Oyama M, Chen X, Wang XR. Functionalized multiwall carbon nanotubes combined with bis(2,2′-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) as an electrochemiluminescence sensor, Sensors and Actuators B, 2008, 129: 758–763

    Article  Google Scholar 

  28. Sun CY, Lu W, Gao YF, Li JH. Electrochemiluminescence from Ru(bpy) 2+3 immobilized in poly(3,4-ethylenedioxythiophene)/poly (styrenesulfonate)-poly(vinyl alcohol) composite films. Anal Chim Acta, 2009, 632: 163–167

    Article  CAS  Google Scholar 

  29. Wang HY, Xu GB, Dong SJ. Electrochemistry and electrochemilu-minescence of stable tris (2,2′-bipyridyl)ruthenium(II) monolayer assembled on benzene sulfonic acid modified glassy carbon electrode. Talanta, 2001, 55: 61–67

    Article  CAS  Google Scholar 

  30. Xiang Y, Zhang YY, Qian XQ, Chai YQ, Wang J, Yuan R. Ultrasensitive aptamer-based protein detection via a dual amplified biocatalytic strategy. Biosens Bioelectron, 2010, 25: 2539–2542

    Article  CAS  Google Scholar 

  31. Wang XY, Dong P, Yun W, Xu Y, He PG, Fang YZ. A solid-state electrochemiluminescence biosensing switch for detection of thrombin based on ferrocene-labeled molecular beacon aptamer. Biosens Bioelectron, 2009, 24: 3288–3292

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChengXiao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, F., Jia, L., Zhang, Y. et al. Electrogenerated chemiluminescence aptasensor for thrombin incorporating poly(pyrrole-co-pyrrole propylic acid) nanoparticles loaded with aptamer and ruthenium complex. Sci. China Chem. 54, 1357–1364 (2011). https://doi.org/10.1007/s11426-011-4329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4329-4

Keywords

Navigation