Skip to main content
Log in

Redox-responsive carbometalated ruthenium and osmium complexes

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organometallic conjugated complexes have become an important type of stimuli-responsive materials because of their appealing electrochemical properties and rich photonic, electronic, and magnetic properties. They are potentially useful in a wide range of applications such as molecular wires, molecular switches, molecular machines, molecular memory, and optoelectronic detections. This review outlines the recent progress on the molecular design of carbometalated ruthenium and osmium complexes and their applications as redox-responsive materials with visible and near-infrared (NIR) absorptions and electron paramagnetic resonance as readout signals. Three molecule systems are introduced, including the symmetric diruthenium complexes, metal-amine conjugated bi-center system, and multi-center redox-active organometallic compounds. Because of the presence of a metal-carbon bond on each metal component and strong electronic coupling between redox sites, these compounds display multiple reversible redox processes at low potentials and each redox state possesses significantly different physical and chemical properties. Using electrochemical potentials as input signals, these materials show reversible NIR absorption spectral changes, making them potentially useful in NIR electrochromism and information storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li H, Qu DH, Sci China Chem, 2015, 58: 916–921

    Article  CAS  Google Scholar 

  2. Guragain S, Bastakoti BP, Malgras V, Nakashima K, Yamauchi Y, Chem Eur J, 2015, 21: 13164–13174

    Article  CAS  Google Scholar 

  3. Ngarkar SS, Desai AV, Ghosh K, Chem Asian J, 2014, 9: 2358–2376

    Article  Google Scholar 

  4. Bléger D, Hecht S, Angew Chem Int Ed, 2015, 54: 11338–11349

    Article  Google Scholar 

  5. Zarzar LD, Aizenberg J, Acc Chem Res, 2014, 47: 530–539

    Article  CAS  Google Scholar 

  6. Jochumab FD, Theato P, Chem Soc Rev, 2013, 42: 7468–7483

    Article  Google Scholar 

  7. Qu DH, Wang QC, Zhang QW, Ma X, Tian H, Chem Rev, 2015, 115: 7543–7588

    Article  CAS  Google Scholar 

  8. Xu K, Zhao J, Cui X, Ma J, J Phys Chem A, 2015, 119: 468–481

    Article  CAS  Google Scholar 

  9. Xu K, Zhao J, Cui X, Ma J, Chem Commun, 2015, 51: 1803–1806

    Article  CAS  Google Scholar 

  10. Xiao C, Zhao WY, Zhou DY, Huang Y, Tao Y, Wu WH, Yang C, Chin Chem Lett, 2015, 26: 817–824

    Article  CAS  Google Scholar 

  11. Zhang M, Yan X, Huang F, Niu Z, Gibson HW, Acc Chem Res, 2014, 47: 1995–2005

    Article  CAS  Google Scholar 

  12. Ma X, Tian H, Acc Chem Res, 2014, 47: 1971–1981

    Article  CAS  Google Scholar 

  13. Guo DS, Liu Y, Acc Chem Res, 2014, 47: 1925–1934

    Article  CAS  Google Scholar 

  14. Zhang SJ, Wang Q, Cheng M, Qian XH, Yang Y, Jiang JL, Wang LY, Chin Chem Lett, 2015, 26: 885–888

    Article  CAS  Google Scholar 

  15. Zhang M, Gao J, Chen J, Cai M, Jiang J, Tian Z, Wang H, Sci China Chem, 2016, 59: 848–852

    Article  CAS  Google Scholar 

  16. Huang C, Rudnev AV, Hong W, Wandlowski T, Chem Soc Rev, 2015, 44: 889–901

    Article  CAS  Google Scholar 

  17. Rikken RSM, Nolte RJM, Maan JC, van Hest JCM, Wilson DA, Christianen PCM, Soft Matter, 2014, 10: 1295–1308

    Article  CAS  Google Scholar 

  18. van Rhee PG, Rikken RSM, Abdelmohsen LKEA, Maan JC, Nolte RJM, van Hest JCM, Christianen PCM, Wilson DA, Nat Commun, 2014, 5: 5010

    Article  Google Scholar 

  19. Wang Q, Cheng M, Zhao Y, Yang Z, Jiang J, Wang L, Pan Y, Chem Commun, 2014, 50: 15585–15588

    Article  CAS  Google Scholar 

  20. Hu XY, Chen Y, Liu Y, Chin Chem Lett, 2015, 26: 862–866

    Article  CAS  Google Scholar 

  21. Lou Z, Li P, Han K, Acc Chem Res, 2015, 48: 1358–1368

    Article  CAS  Google Scholar 

  22. Canevet D, Sallé M, Zhang G, Zhang D, Zhu D, Chem Commun, 2009: 2245–2269

    Google Scholar 

  23. Nakahata M, Takashima Y, Yamaguchi H, Harada A, Nat Commun, 2011, 2:511

    Article  Google Scholar 

  24. Klajn R, Stoddart JF, Grzybowski BA, Chem Soc Rev, 2010, 39: 2203–2237

    Article  CAS  Google Scholar 

  25. Fahrenbach AC, Bruns CJ, Li H, Trabolsi A, Coskun A, Stoddart JF, Acc Chem Res, 2014, 47: 482–493

    Article  CAS  Google Scholar 

  26. Fahrenbach AC, Bruns CJ, Cao D, Stoddart JF, Acc Chem Res, 2012, 45: 1581–1592

    Article  CAS  Google Scholar 

  27. Moriuchi T, Hirao T, Acc Chem Res, 2012, 45: 347–360

    Article  CAS  Google Scholar 

  28. Fabre B, Acc Chem Res, 2010, 43: 1509–1518

    Article  CAS  Google Scholar 

  29. Whittell G, Hager MD, Schubert US, Manners I, Nat Mater, 2011, 10: 176–188

    Article  CAS  Google Scholar 

  30. Sakamoto R, Wu KH, Matsuoka R, Maeda H, Nishihara H, Chem Soc Rev, 2015, 44: 7698–7714

    Article  CAS  Google Scholar 

  31. Ni M, Zhang N, Xia W, Wu X, Yao C, Liu X, Hu XY, Lin C, Wang L, J Am Chem Soc, 2016, 138: 6643–6649

    Article  CAS  Google Scholar 

  32. Gong ZL, Zhong YW, Sci China Chem, 2015, 58: 1444–1450

    Article  CAS  Google Scholar 

  33. Gong ZL, Shao JY, Zhong YW, J Electrochem, 2016, 22: 244–259

    CAS  Google Scholar 

  34. Jiang X, Zhu N, Zhao D, Ma Y, Sci China Chem, 2016, 59: 40–52

    Article  CAS  Google Scholar 

  35. Zhong YW, Gong ZL, Shao JY, Yao J, Coord Chem Rev, 2016, 312: 22–40

    Article  CAS  Google Scholar 

  36. Tang JH, Yao CJ, Cui BB, Zhong YW, Chem Rec, 2016, 16: 754–767

    Article  CAS  Google Scholar 

  37. Shen JJ, Zhong YW, Sci Rep, 2015, 5: 13835–13835

    Article  Google Scholar 

  38. Kong DD, Xue LS, Jang R, Liu B, Meng XG, Jin S, Ou YP, Hao X, Liu SH, Chem Eur J, 2015, 21: 9895–9904

    Article  CAS  Google Scholar 

  39. Zhang J, Zhang MX, Sun CF, Xu M, Hartl F, Yin J, Yu GA, Rao L, Liu SH, Organometallics, 2015, 34: 3967–3978

    Article  CAS  Google Scholar 

  40. Zhang DB, Wang JY, Wen HM, Chen ZN, Organometallics, 2014, 33: 4738–4746

    Article  CAS  Google Scholar 

  41. Wen HM, Yang Y, Zhou XS, Liu JY, Zhang DB, Chen ZB, Wang JY, Chen ZN, Tian ZQ, Chem Sci, 2013, 4: 2471–2477

    Article  CAS  Google Scholar 

  42. Zhang LY, Zhang HX, Ye S, Wen HM, Chen ZN, Osawa M, Uosakic K, Sasaki Y, Chem Commun, 2011, 47: 923–925

    Article  Google Scholar 

  43. Yao CJ, Zhong YW, Yao J, J Am Chem Soc, 2011, 133: 15697–15706

    Article  CAS  Google Scholar 

  44. Yao CJ, Zhong YW, Nie HJ, Abruna HD, Yao J, J Am Chem Soc, 2011, 133: 20720–20723

    Article  CAS  Google Scholar 

  45. Yao CJ, Nie HJ, Yang WW, Yao J, Zhong YW, Inorg Chem, 2015, 54: 4688–4698

    Article  CAS  Google Scholar 

  46. Yao CJ, Yao J, Zhong YW, Inorg Chem, 2012, 51: 6259–6263

    Article  CAS  Google Scholar 

  47. Yang WW, Shao JY, Zhong YW, Eur J Inorg Chem, 2015, 2015: 3195–3204

    Article  CAS  Google Scholar 

  48. Wang L, Yang WW, Zhong YW, Yao J, Dalton Trans, 2013, 42: 5611–5614

    Article  CAS  Google Scholar 

  49. Shao JY, Yang WW, Yao J, Zhong YW, Inorg Chem, 2012, 51: 4343–4351

    Article  CAS  Google Scholar 

  50. Ou QP, Xia JL, Zhang J, Xu M, Yin J, Yu GA, Liu SH, Chem Asian J, 2013, 8: 2023–2032

    Article  CAS  Google Scholar 

  51. Ou QP, Zhang J, Xu M, Xia JL, Hartl F, Yin J, Yu GA, Liu SH, Chem Asian J, 2014, 9: 1152–1160

    Article  CAS  Google Scholar 

  52. Zhang J, Sun CF, Zhang MX, Hartl F, Yin J, Yu GA, Rao L, Liu SH, Dalton Trans, 2016, 45: 768–782

    Article  CAS  Google Scholar 

  53. Mondal P, Chatterjee M, Paretzki A, Beyer K, Kaim W, Lahiri GK, Inorg Chem, 2016, 55: 3105–3116

    Article  CAS  Google Scholar 

  54. Mondal P, Das A, Lahiri GK, Inorg Chem, 2016, 55: 1208–1218

    Article  CAS  Google Scholar 

  55. Shi J, Chai Z, Tang R, Hua J, Li Q, Li Z, Sci China Chem, 2015, 58: 1144–1151

    Article  CAS  Google Scholar 

  56. Xiao J, Shi J, Li D, Meng Q, Sci China Chem, 2015, 58: 221–238

    Article  CAS  Google Scholar 

  57. Yao CJ, Zheng RH, Shi Q, Zhong YW, Yao J, Chem Commun, 2012, 48: 5680–5682

    Article  CAS  Google Scholar 

  58. Cui BB, Yao CJ, Yao J, Zhong YW, Chem Sci, 2014, 5: 932–941

    Article  CAS  Google Scholar 

  59. Polit W, Exner T, Wuttke E, Winter RF, BioInorg React Mech 2012, 8: 85–105

    CAS  Google Scholar 

  60. Nie HJ, Shao JY, Yao CJ, Zhong YW, Chem Commun, 2014, 50: 10082–10085

    Article  CAS  Google Scholar 

  61. Gong ZL, Zhong YW, Organometallics, 2013, 32: 7495–7502

    Article  CAS  Google Scholar 

  62. Gong ZL, Cui BB, Yang WW, Yao J, Zhong YW, Electrochim Acta, 2014, 130: 748–753

    Article  CAS  Google Scholar 

  63. Kurita T, Nishimori Y, Toshimitsu F, Muratsugu S, Kume S, Nishihara H, J Am Chem Soc, 2010, 132: 4524–4525

    Article  CAS  Google Scholar 

  64. Simao C, Mas-Torrent M, Crivillers N, Lloveras V, Artes JM, Gorostiza P, Veciana J, Rovira C, Nat Chem, 2011, 3: 359–364

    Article  CAS  Google Scholar 

  65. Flamigni L, Collin JP, Sauvage JP, Acc Chem Res, 2008, 41: 857–871

    Article  CAS  Google Scholar 

  66. Cui BB, Tang JH, Yao J, Zhong YW, Angew Chem Int Ed, 2015, 54: 9192–9197

    Article  CAS  Google Scholar 

  67. Tang JH, Shao JY, He YQ, Wu SH, Yao J, Zhong YW, Chem Eur J, 2016, 22: 10341–10345

    Article  CAS  Google Scholar 

  68. Yao CJ, Zhong YW, Yao J, Inorg Chem, 2013, 52: 4040–4045

    Article  CAS  Google Scholar 

  69. Sun MJ, Nie HJ, Yao JN, Zhong YW, Chin Chem Lett, 2015, 26: 649–652

    Article  CAS  Google Scholar 

  70. Grelaud G, Cifuentes MP, Schwich T, Argouarch G, Petrie S, Stranger R, Paul F, Humphrey MG, Eur J Inorg Chem, 2012, 2012: 65–75

    Article  CAS  Google Scholar 

  71. Shao JY, Yao CJ, Cui BB, Gong ZL, Zhong YW, Chin Chem Lett, 2016, 2016, 27: 1105–1114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21271176, 21472196, 21521062, 21501183), the Ministry of Science and Technology of China (2012YQ120060), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB 12010400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-Liang Gong or Yu-Wu Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, ZL., Yao, CJ., Shao, JY. et al. Redox-responsive carbometalated ruthenium and osmium complexes. Sci. China Chem. 60, 583–590 (2017). https://doi.org/10.1007/s11426-016-0341-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0341-5

Keywords

Navigation