Skip to main content
Log in

Urea-bridged diferrocene: structural, electrochemical, and spectroelectrochemical studies

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Urea-bridged diferrocene derivatives N,N′-diferrocenylurea (1) and N,N′-dimethyl-N,N′-diferrocenylurea (2) were prepared and characterized. Single-crystal X-ray analysis shows that Compound 1 has a trans-trans linear conformation whereas Compound 2 has a trans-cis conformation. Both compounds display two consecutive redox couples with, respectively, E1/2 of +0.29 and +0.42 V vs. Ag/AgCl for 1 and +0.31 and +0.50 V for 2. Spectroelectrochemical studies show the presence of distinct intervalence charge transfer (IVCT) transitions for the one-electron-oxidized mixed-valent Compound 1 +, with an estimated electronic coupling parameter of 190 cm-1. By contrast, the one-electron-oxidized Compound 2 + shows much weaker IVCT transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Creutz C, Taube H. A direct approach to measuring the Franck- Condon barrier to electron transfer between metal ions. J Am Chem Soc, 1969, 91: 3988–3989

    Article  CAS  Google Scholar 

  2. Hush NS. Distance dependence of electron transfer rates. Coord Chem Rev, 1985, 64: 135–157

    Article  CAS  Google Scholar 

  3. D’Alessandro DM, Keene FR. Intervalence charge transfer (IVCT) in trinuclear and tetranuclear complexes of iron, ruthenium, and osmium. Chem Rev, 2006, 106: 2270–2298

    Article  Google Scholar 

  4. Aguirre-Etcheverry P, O’Hare D. Electronic communication through unsaturated hydrocarbon bridges in homobimetallic organometallic complexes. Chem Rev, 2010, 110: 4839–4864

    Article  CAS  Google Scholar 

  5. Heckmann S, Lambert C. Organic mixed-valence compounds: a playground for electrons and holes. Angew Chem Int Ed, 2012, 51: 326–392

    Article  CAS  Google Scholar 

  6. Zhang DB, Wang JY, Wen HM, Chen ZN. Electrochemical, spectroscopic, and theoretical studies on diethynyl ligand bridged ruthenium complexes with 1,3-bis(2-pyridylimino)isoindolate. Organometallics, 2014, 33: 4738–4746

    Article  CAS  Google Scholar 

  7. Ou YP, Zhang J, Xu M, Xia J, Hartl F, Yin J, Yu GA, Liu SH. Bridge-localized HOMO-binding character of divinylanthracenebridged dinuclear ruthenium carbonyl complexes: spectroscopic, spectroelectrochemical, and computational studies. Chem Asian J, 2014, 9: 1152–1160

    Article  CAS  Google Scholar 

  8. Xiao X, Meng M, Lei H, Liu CY. Electronic coupling and electron transfer between two dimolybdenum units spaced by a biphenylene group. J Phys Chem C, 2014, 118: 8308–8315

    Article  CAS  Google Scholar 

  9. Xia J, Ou YP, Meng XG, Yin J, Yu G, Liu SH. Synthesis and characterization of dithia[3.3]metaparacyclophane-bridged dimetallic ruthenium acetylide complexes. Eur J Inorg Chem, 2014: 247–255

    Google Scholar 

  10. Cheng T, Meng M, Lei H, Liu CY. Perturbation of the charge density between two bridged Mo2 centers: the remote substituent effects. Inorg Chem, 2014, 53: 9213–9221

    Article  CAS  Google Scholar 

  11. Wen HM, Yang Y, Zhou XS, Liu JY, Zhang DB, Chen ZB, Wang JY, Chen ZN, Tian ZQ. Electrical conductance study on 1,3-butadiynelinked dinuclear ruthenium(II) complexes within single molecule break junctions. Chem Sci, 2013, 4: 2471–2477

    Article  CAS  Google Scholar 

  12. Cui BB, Yao CJ, Yao J, Zhong YW. Electropolymerized films as a molecular platform for volatile memory devices with two nearinfrared outputs and long retention time. Chem Sci, 2014, 5: 932–941

    Article  CAS  Google Scholar 

  13. Cui BB, Mao Z, Chen Y, Zhong YW, Yu G, Zhan C, Yao J. Tuning of resistive memory switching in electropolymerized metallopolymeric films. Chem Sci, 2015, 6: 1308–1315

    Article  CAS  Google Scholar 

  14. Matsumura M, Tanatani A, Azumaya I, Masu H, Hashizume D, Kagechika H, Muranaka A, Uchiyama M. Unusual conformational preference of an aromatic secondary urea: solvent-dependent open-closed conformational switching of N,N′-bis(porphyrinyl)urea. Chem Commun, 2013, 49: 2290–2292

    Article  CAS  Google Scholar 

  15. Clayden J, Lemiegre L, Pickworth M, Jones L. Conformation and stereodynamics of 2,2′-distustituted N,N′-diaryl ureas. Org Biomol Chem, 2008, 6: 2908–2913

    Article  CAS  Google Scholar 

  16. Volz N, Clayden J. The urea renaissance. Angew Chem Int Ed, 2011, 50: 12148–12155

    Article  CAS  Google Scholar 

  17. Amendola V, Fabbrizzi L, Mosca L. Anion recognition by hydrogen bonding: urea-based receptors. Chem Soc Rev, 2010, 39: 3889–3915

    Article  CAS  Google Scholar 

  18. Luo C, Tang K, Li Y, Yin DL, Chen XG, Huang HH. Design, synthesis and in vitro antitumor evaluation of novel diaryl urea derivatives bearing sulfonamide moiety. Sci China Chem, 2013, 56: 1564–1572

    Article  CAS  Google Scholar 

  19. Yue XL, Li H, Liu SS, Zhang QY, Yao JJ, Wang FY. N-fluorinated phenyl-N′-pyrimidyl urea derivatives: synthesis, biological evaluation and 3D-QSAR study. Chin Chem Lett, 2014, 25: 1069–1072

    Article  CAS  Google Scholar 

  20. Gholami M, Tykwinski RR. Oligomeric and polymeric systems with a cross-conjugated ð-Framework. Chem Rev, 2006, 106: 4997–5027

    Article  CAS  Google Scholar 

  21. Lewis FD, Daublain P, Santos GBD, Liu W, Asatryan AM, Markaria SA, Fiebig T, Raytchev M, Wang Q. Dynamics and mechanism of bridge-dependent charge separation in pyrenylurea-nitrobenzene ð-stacked protophanes. J Am Chem Soc, 2006, 128: 4792–3801

    Article  CAS  Google Scholar 

  22. Gong ZL, Zhong YW, Yao J. Conformation-determined throughbond versus through-space electronic communication in mixedvalence systems with a cross-conjugated urea bridge. Chem Eur J, 2015, 21: 1554–1566

    Article  CAS  Google Scholar 

  23. Hildebrandt A, Lang H. (Multi)ferrocenyl five-membered heterocycles: excellent connecting units for electron transfer studies. Organometallics, 2013, 32: 5640–5653

    Article  CAS  Google Scholar 

  24. Xu GL, DeRosa MC, Crutchley RJ, Ren T. Trans-bis(alkynyl) diruthenium( III) tetra(amidinate): an effective facilitator of electronic delocalization. J Am Chem Soc, 2004, 126: 3728–3729

    Article  CAS  Google Scholar 

  25. Wu KQ, Guo J, Yan, JF, Xie LL, Xu FB, Bai S, Nockemann P, Yuan YF. Alkynyl-bridged ruthenium(II) 4′-diferrocenyl-2,2′:6′,2″-terpyridine electron transfer complexes: synthesis, structures, and electrochemical and spectroscopic studies. Organometallics, 2011, 30: 3504–3511

    Article  CAS  Google Scholar 

  26. Wu KQ, Guo J, Yan JF, Xie LL, Xu FB, Bai S, Nockemann P, Yuan YF. Ruthenium(II) bis(terpyridine) electron transfer complexes with alkynyl-ferrocenyl bridges: synthesis, structures, and electrochemical and spectroscopic studies. Dalton Trans, 2012, 41: 11000–11008

  27. Lapic J, Pavlovic G, Siebler D, Heinze K, Rapic V. Structural, spectroscopic, and theoretical study of ferrocene ureidopeptides. Organometallics, 2008, 27: 726–735

    Article  CAS  Google Scholar 

  28. Mahmoud K, Long YT, Schatte G, Kraatz HB. Electronic communication through the ureylene bridge: spectroscopy, structure and electrochemistry of dimethyl 1′,1′-ureylenedi(1-ferrocenecarboxylate). J Organomet Chem, 2004, 689: 2250–2255

    Article  CAS  Google Scholar 

  29. Goeltz JC, Kubiak CP. Facile purification of iodoferrocene. Organometallics, 2011, 30: 3908–3910

    Article  CAS  Google Scholar 

  30. Leonidova A, Joshi T, Nipkow D, Frei A, Penner JE, Konatschnig S, Patra M, Gasser G. An environmentally benign and cost-effective synthesis of aminoferrocene and aminoruthenocene. Organometallics, 2013, 32: 2037–2040

    Article  CAS  Google Scholar 

  31. Sheldrick GM. A short history of SHELX. Acta Cryst, 2008, A64: 112–122

    Article  CAS  Google Scholar 

  32. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK. Puschmann HOLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst, 2009, 42: 339–341

    Article  CAS  Google Scholar 

  33. Lehrich SW, Hildebrandt A, Ruüffer T, Korb M, Low PJ, Lang H. Synthesis, characterization, electrochemistry, and computational studies of ferrocenyl-substituted siloles. Organometallics, 2014, 33: 4836–4845

    Article  CAS  Google Scholar 

  34. Winter RF. Half-wave potential splittings ΔE 1/2 as a measure of electronic coupling in mixed-valent systems: triumphs and defeats. Organometallics, 2014, 33: 4517–4536

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Wu Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, ZL., Zhong, YW. Urea-bridged diferrocene: structural, electrochemical, and spectroelectrochemical studies. Sci. China Chem. 58, 1444–1450 (2015). https://doi.org/10.1007/s11426-015-5423-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5423-9

Keywords

Navigation