Skip to main content
Log in

Molecular engineering tuning optoelectronic properties of thieno[3,2-b]thiophenes-based electrochromic polymers

  • Feature Articles
  • Special Topic · Electrochromics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Thieno[3,2-b]thiophene (TT) monomers end-capped with 3,4-ethylenedioxythiophene (EDOT) moieties are electropolymerized to form π-conjugated polymers with distinct electrochromic (EC) properties. Steric and electronic factors (electron donor and acceptor substituents) in the side groups of the TT core, as well as the structure of the polymer backbone strongly affect the electrochemical and optical properties of the polymers and their electrochromic characteristics. The studied polymers show low oxidation potentials, tunable from–0.78 to +0.30 V (vs. Fc/Fc+) and the band gaps from 1.46 to 1.92 eV and demonstrate wide variety of color palettes in polymer films in different states, finely tunable by structural variations in the polymer backbone and the side chains. EC materials of different colors in their doped/dedoped states have been developed (violet, deep blue, light blue, green, brown, purple-red, pinkish-red, orange-red, light gray, cyan and colorless transparent). High optical contrast (up to 79%), short response time (0.57–0.80 s), good cycling stability (up to 91% at 2000 cycles) and high coloration efficiency (up to 234.6 cm2 C–1) have been demonstrated and the influence of different factors on the above parameters of EC polymers have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dyer AL, Österholm AM, Shen DE, Johnson KE, Reynolds JR. Conjugated electrochromic polymers: structure-driven colour and processing control. In: Mortimer RJ, Rosseinsky DR, Monk PMS, Eds. Electrochromic Materials and Devices. Part I ElectrochromicMaterials and Processing. Weinheim: Wiley-VCH, 2015. 113–169

    Chapter  Google Scholar 

  2. Platt JR. J Chem Phys, 1961, 34: 862–863

    Article  CAS  Google Scholar 

  3. Mortimer RJ. Chem Soc Rev, 1997, 26: 147

    Article  CAS  Google Scholar 

  4. Yeh MH, Lin L, Yang PK, Wang ZL. ACS Nano, 2015, 9: 4757–4765

    Article  CAS  Google Scholar 

  5. Runnerstrom EL, Llordés A, Lounis SD, Milliron DJ. Chem Commun, 2014, 50: 10555–10572

    Article  CAS  Google Scholar 

  6. Granqvist CG, Azens A, Isidorsson J, Kharrazi M, Kullman L, Lindström T, Niklasson GA, Ribbing CG, Rönnow D, Strømme Mattsson M, Veszelei M. J Non-Crystalline Solids, 1997, 218: 273–279

    Article  CAS  Google Scholar 

  7. Österholm AM, Shen DE, Kerszulis JA, Bulloch RH, Kuepfert M, Dyer AL, Reynolds JR. ACS Appl Mater Interfaces, 2015, 7: 1413–1421

    Article  Google Scholar 

  8. Beaujuge PM, Reynolds JR. Chem Rev, 2010, 110: 268–320

    Article  CAS  Google Scholar 

  9. Xu T, Walter EC, Agrawal A, Bohn C, Velmurugan J, Zhu W, Lezec HJ, Talin AA. Nat Commun, 2016, 7: 10479

    Article  CAS  Google Scholar 

  10. Sonmez G, Sonmez HB. J Mater Chem, 2006, 16: 2473–2477

    Article  CAS  Google Scholar 

  11. Invernale MA, Ding Y, Sotzing GA. ACS Appl Mater Interfaces, 2010, 2: 296–300

    Article  CAS  Google Scholar 

  12. Yu H, Shao S, Yan L, Meng H, He Y, Yao C, Xu P, Zhang X, Hu W, Huang W. J Mater Chem C, 2016, 4: 2269–2273

    Article  CAS  Google Scholar 

  13. Chandrasekhar P, Zay BJ, Birur GC, Rawal S, Pierson EA, Kauder L, Swanson T. Adv Funct Mater, 2002, 12: 95–103

    Article  CAS  Google Scholar 

  14. Chandrasekhar P, Zay BJ, McQueeney T, Scara A, Ross D, Birur GC, Haapanen S, Kauder L, Swanson T, Douglas D. Synth Met, 2003, 135-136: 23–24

    Article  CAS  Google Scholar 

  15. Abidin T, Zhang Q, Wang KL, Liaw DJ. Polymer, 2014, 55: 5293–5304

    Article  CAS  Google Scholar 

  16. Beverina L, Pagani GA, Sassi M. Chem Commun, 2014, 50: 5413–5430

    Article  CAS  Google Scholar 

  17. Amb CM, Dyer AL, Reynolds JR. Chem Mater, 2011, 23: 397–415

    Article  CAS  Google Scholar 

  18. Bulloch RH, Kerszulis JA, Dyer AL, Reynolds JR. ACS Appl Mater Interfaces, 2015, 7: 1406–1412

    Article  CAS  Google Scholar 

  19. Kerszulis JA, Amb CM, Dyer AL, Reynolds JR. Macromolecules, 2014, 47: 5462–5469

    Article  CAS  Google Scholar 

  20. Bulloch RH, Reynolds JR. J Mater Chem C, 2016, 4: 603–610

    Article  CAS  Google Scholar 

  21. Kirchmeyer S, Reuter K. J Mater Chem, 2005, 15: 2077–2088

    Article  CAS  Google Scholar 

  22. Jonas F, Schrader L. Synth Met, 1991, 41: 831–836

    Article  CAS  Google Scholar 

  23. Heywang G, Jonas F. Adv Mater, 1992, 4: 116–118

    Article  CAS  Google Scholar 

  24. Dietrich M, Heinze J, Heywang G, Jonas F. J Electroanal Chem, 1994, 369: 87–92

    Article  CAS  Google Scholar 

  25. Xia Y, Ouyang J. ACS Appl Mater Interfaces, 2012, 4: 4131–4140

    Article  CAS  Google Scholar 

  26. Kim YH, Sachse C, Machala ML, May C, Müller-Meskamp L, Leo K. Adv Funct Mater, 2011, 21: 1076–1081

    Article  CAS  Google Scholar 

  27. Heuer HW, Wehrmann R, Kirchmeyer S. Adv Funct Mater, 2002, 12: 89–94

    Article  CAS  Google Scholar 

  28. Invernale MA, Bokria JG, Ombaba M, Lee KR, Mamangun DMD, Sotzing GA. Polymer, 2010, 51: 378–382

    Article  CAS  Google Scholar 

  29. Groenendaal L, Zotti G, Aubert PH, Waybright SM, Reynolds JR. Adv Mater, 2003, 15: 855–879

    Article  CAS  Google Scholar 

  30. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR. Adv Mater, 2000, 12: 481–494

    Article  CAS  Google Scholar 

  31. Roncali J, Blanchard P, Frère P. J Mater Chem, 2005, 15: 1589–1610

    Article  CAS  Google Scholar 

  32. Beaujuge PM, Amb CM, Reynolds JR. Acc Chem Res, 2010, 43: 1396–1407

    Article  CAS  Google Scholar 

  33. Cinar ME, Ozturk T. Chem Rev, 2015, 115: 3036–3140

    Article  CAS  Google Scholar 

  34. Skabara PJ. Fused oligothiophenes. In: Perepichka IF, Perepichka DF, Eds. Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics. Volume 1: Synthesis and Theory. New York: John Wiley & Sons, 2009. 219–254

  35. Zhang Q, Wang Y, Kan B, Wan X, Liu F, Ni W, Feng H, Russell TP, Chen Y. Chem Commun, 2015, 51: 15268–15271

    Article  CAS  Google Scholar 

  36. Tang W, Ke L, Tan L, Lin T, Kietzke T, Chen ZK. Macromolecules, 2007, 40: 6164–6171

    Article  CAS  Google Scholar 

  37. Perepichka IF, Perepichka DF, Meng H, Wudl F. Adv Mater, 2005, 17: 2281–2305

    Article  CAS  Google Scholar 

  38. Hamaguchi A, Negishi T, Kimura Y, Ikeda Y, Takimiya K, Bisri SZ, Iwasa Y, Shiro T. Adv Mater, 2015, 27: 6606–6611

    Article  CAS  Google Scholar 

  39. Toksabay S, Hacioglu SO, Unlu NA, Cirpan A, Toppare L. Polymer, 2014, 55: 3093–3099

    Article  CAS  Google Scholar 

  40. Turbiez M, Frère P, Leriche P, Mercier N, Roncali J. Chem Commun, 2005, 1161–1163

    Google Scholar 

  41. Capan A, Ozturk T. Synth Met, 2014, 188: 100–103

    Article  CAS  Google Scholar 

  42. Shi J, Zhu X, Xu P, Zhu M, Guo Y, He Y, Hu Z, Murtaza I, Yu H, Yan L, Goto O, Meng H. Macromol Rapid Commun, 2016, 37: 1344–1351

    Article  CAS  Google Scholar 

  43. Xu P, Murtaza I, Shi J, Zhu M, He Y, Yu H, Goto O, Meng H. Polym Chem, 2016, 7: 5351–5356

    Article  CAS  Google Scholar 

  44. Zhu X, Zhu Y, Murtaza I, Shi J, He Y, Xu P, Zhu M, Goto O, Meng H. RSC Adv, 2016, 6: 75522–75529

    Article  CAS  Google Scholar 

  45. Raimundo JM, Blanchard P, Frère P, Mercier N, Ledoux-Rak I, Hierle R, Roncali J. Tetrahedron Lett, 2001, 42: 1507–1510

    Article  CAS  Google Scholar 

  46. Turbiez M, Frère P, Roncali J. J Org Chem, 2003, 68: 5357–5360

    Article  CAS  Google Scholar 

  47. Turbiez M, Frère P, Allain M, Videlot C, Ackermann J, Roncali J. Chem Eur J, 2005, 11: 3742–3752

    Article  CAS  Google Scholar 

  48. Turbiez M, Hergué N, Leriche P, Frère P. Tetrahedron Lett, 2009, 50: 7148–7151

    Article  CAS  Google Scholar 

  49. Us CN, Icli Ozkut M. Macromolecules, 2016, 49: 3009–3015

    Article  CAS  Google Scholar 

  50. Balan A, Baran D, Gunbas G, Durmus A, Ozyurt F, Toppare L. Chem Commun, 2009, 6768

    Google Scholar 

  51. Amb CM, Beaujuge PM, Reynolds JR. Adv Mater, 2010, 22: 724–728

    Article  CAS  Google Scholar 

  52. Wang JL, Yin QR, Miao JS, Wu Z, Chang ZF, Cao Y, Zhang RB, Wang JY, Wu HB, Cao Y. Adv Funct Mater, 2015, 25: 3514–3523

    Article  CAS  Google Scholar 

  53. Ledwon P, Zassowski P, Jarosz T, Lapkowski M, Wagner P, Cherpak V, Stakhira P. J Mater Chem C, 2016, 4: 2219–2227

    Article  CAS  Google Scholar 

  54. Gu PY, Zhang J, Long G, Wang Z, Zhang Q. J Mater Chem C, 2016, 4: 3809–3814

    Article  CAS  Google Scholar 

  55. Shi P, Amb CM, Dyer AL, Reynolds JR. ACS Appl Mater Interfaces, 2012, 4: 6512–6521

    Article  CAS  Google Scholar 

  56. Gaupp CL, Welsh DM, Rauh RD, Reynolds JR. Chem Mater, 2002, 14: 3964–3970

    Article  CAS  Google Scholar 

  57. Liang L, Zhang J, Zhou Y, Xie J, Zhang X, Guan M, Pan B, Xie Y. Sci Rep, 2013, 3: 1936

    Google Scholar 

  58. Yao DD, Rani RA, O’Mullane AP, Kalantar-zadeh K, Ou JZ. J Phys Chem C, 2014, 118: 10867–10873

    Article  CAS  Google Scholar 

  59. Ye Q, Neo WT, Lin T, Song J, Yan H, Zhou H, Shah KW, Chua SJ, Xu J. Polym Chem, 2015, 6: 1487–1494

    Article  CAS  Google Scholar 

  60. Neo WT, Ye Q, Lin TT, Chua SJ, Xu J. Sol Energ Mat Sol C, 2015, 136: 92–99

    Article  CAS  Google Scholar 

  61. Tehrani P, Hennerdal LO, Dyer AL, Reynolds JR, Berggren M. J Mater Chem, 2009, 19: 1799–1802

    Article  CAS  Google Scholar 

  62. Huang JH, Hsu CY, Hu CW, Chu CW, Ho KC. ACS Appl Mater Interfaces, 2010, 2: 351–359

    Article  CAS  Google Scholar 

  63. Perepichka IF, Besbes M, Levillain E, Sallé M, Roncali J. Chem Mater, 2002, 14: 449–457

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Shenzhen Key Laboratory of Organic Optoelectromagnetic Functional Materials of Shenzhen Science and Technology Plan (ZDSYS20140509094114164), the Shenzhen Peacock Program (KQTD2014062714543296), Shenzhen Science and Technology Research Grant (JCYJ20140509093817690), Nanshan Innovation Agency Grant (KC2015ZDYF0016A), Guangdong Key Research Project (2014B090914003, 2015B090914002), Guangdong Talents Project, the National Basic Research Program of China (2015CB856505), the National Natural Science Foundation of China (51373075), Guangdong Academician Workstation (2013B090400016), the Natural Science Foundation of Guangdong Province (2014A030313800). Igor F. Perepichka thanks to the Santander Universities Research Mobility Award to support his travel to Shenzhen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Li, W., Xu, P. et al. Molecular engineering tuning optoelectronic properties of thieno[3,2-b]thiophenes-based electrochromic polymers. Sci. China Chem. 60, 63–76 (2017). https://doi.org/10.1007/s11426-016-0305-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0305-9

Keywords

Navigation