Skip to main content
Log in

Oxidative (co)polymerization of dithiarubicene derivatives and electrochromic properties of narrow-bandgap conjugated polymers

  • Original Article
  • Published:
Polymer Journal Submit manuscript

Abstract

EDOTDTR with a dithiarubicene (DTR) core and 3,4-ethylenedioxythiophene (EDOT) flanking group was synthesized by a Migita-Kosugi-Stille cross-coupling reaction. The EDOTDTR exhibited long-wavelength absorption at 822 nm and a narrow electrical bandgap energy (Egelect = 1.32 eV) due to its efficient intramolecular charge transfer. Chemical polymerization by FeCl3 in CHCl3 solution and electropolymerization on an ITO electrode yielded the conjugated polymers polyDTRchem and polyEDOTDTRelect, respectively. CV measurements revealed that the redox processes of the polymer films were reversible and not diffusion-limited. Both conjugated polymers exhibited an absorption band at 480 nm, indicating that their π-π* transitions were not much influenced by polymerization. The absorption edge of the polyEDOTDTRelect film extended into the near-infrared region (λonset > 1000 nm), implying effective intra- and intermolecular charge transfer interactions between the DTR and EDOT segments. The polyDTRchem and polyEDOTDTRelect were electrochromic active, and the corresponding color changes were brought about by applying both positive and negative potentials. In particular, both polymer films showed good switching stabilities at the oxidation potential, as confirmed by spectroelectrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev. 2009;109:897–1091.

    Article  CAS  Google Scholar 

  2. Günes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev. 2007;107:1324–38.

    Article  Google Scholar 

  3. Yang J, Zhao Z, Wang S, Guo Y, Liu Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem. 2018;4:2748–85.

    Article  CAS  Google Scholar 

  4. McQuade DT, Pullen AE, Swager TM. Conjugated polymer-based chemical sensors. Chem Rev. 2000;100:2537–74.

    Article  CAS  Google Scholar 

  5. Mullekom HAM, Vekemans JAJM, Havinga EE, Meijer EW. Developments in the chemistry and bandgap engineering of donor-acceptor substituted conjugated polymers. Mater Sci Eng R: Rep. 2001;32:1–40.

    Article  Google Scholar 

  6. Lv X, Li W, Ouyang M, Zhang Y, Wright DS, Zhang C. Polymeric electrochromic materials with donor–acceptor structures. J Mater Chem C. 2017;5:12–28.

    Article  CAS  Google Scholar 

  7. Beaujuge PM, Reynolds JR. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev. 2010;110:268–320.

    Article  CAS  Google Scholar 

  8. Beaujuge PM, Ellinger S, Reynolds JR. The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nat Mater. 2008;7:795–9.

    Article  CAS  Google Scholar 

  9. Wang K, Zhu L, Hu X, Han M, Lin J, Guo Z, et al. Novel core-substituted naphthalene diimide-based conjugated polymers for electrochromic applications. J Mater Chem C. 2021;9:16959–65.

    Article  CAS  Google Scholar 

  10. Figà V, Chiappara C, Ferrante F, Casaletto MP, Principato F, Cataldo S, et al. Symmetric naphthalenediimidequaterthiophenes for electropolymerized electrochromic thin films. J Mater Chem C. 2015;3:5985–94.

    Article  Google Scholar 

  11. Singhal S, Patra A. Benzothiadiazole bridged EDOT based donor-acceptor polymers with tunable optical, electrochemical, morphological and electrochromic performance: effects of solvents and electrolytes. Phys Chem Chem Phys. 2020;22:14527–36.

    Article  CAS  Google Scholar 

  12. Beaujuge PM, Vasilyeva SV, Ellinger S, McCarley TD, Reynolds JR. Unsaturated linkages in dioxythiophene-benzothiadiazole donor-acceptor electrochromic polymers: the key role of conformational freedom. Macromolecules. 2009;42:3694–706.

    Article  CAS  Google Scholar 

  13. Durmus A, Gunbas GE, Camurlu P, Toppare L. A neutral state green polymer with a superior transmissive light blue oxidized state. Chem Commun. 2007:3246–8.

  14. Beaujuge PM, Ellinger S, Reynolds JR. Spray processable green to highly transmissive electrochromics via chemically polymerizable donor–acceptor heterocyclic pentamers. Adv Mater. 2008;20:2772–6.

    Article  CAS  Google Scholar 

  15. Kerszulis JA, Bulloch RH, Teran NB, Wolfe RMW, Reynolds JR. Relax: a sterically relaxed donor−acceptor approach for color tuning in broadly absorbing, high contrast electrochromic polymers. Macromolecules. 2016;49:6350–9.

    Article  CAS  Google Scholar 

  16. Balan A, Gunbas G, Durmus A, Toppare L. Donor-acceptor polymer with benzotriazole moiety: enhancing the electrochromic properties of the “Donor Unit”. Chem Mater. 2008;20:7510–3.

    Article  CAS  Google Scholar 

  17. Içli M, Pamuk M, Algi F, Önal AM, Cihaner A. Donor-acceptor polymer electrochromes with tunable colors and performance. Chem Mater. 2010;22:4034–44.

    Article  Google Scholar 

  18. Durmus A, Gunbas GE, Toppare L. New, highly stable electrochromic polymers from 3,4-ethylenedioxythiophene-bis-substituted quinoxalines toward green polymeric materials. Chem Mater. 2007;19:6247–51.

    Article  CAS  Google Scholar 

  19. Gunbas GE, Durmus A, Toppare L. A unique processable green polymer with a transmissive oxidized state for realization of potential RGB-based electrochromic device applications. Adv Funct Mater. 2008;18:2026–30.

    Article  CAS  Google Scholar 

  20. Zhang Y, Chen S, Zhang Y, Du H, Zhao J. Design and characterization of new D–A type electrochromic conjugated copolymers based on Indolo[3,2-b]Carbazole, isoindigo and thiophene units. Polymers. 2019;11:1626.

    Article  Google Scholar 

  21. Chen X, Qiao W, Wang ZY. Visible and near-infrared electrochromic thiophene-diketopyrrolopyrrole polymers. RSC Adv. 2017;7:15521–6.

    Article  CAS  Google Scholar 

  22. Li W, Michinobu T. Electrochromic behavior of donor-acceptor polymers containing diketopyrrolopyrrole unit. J Photopolym Sci Tech. 2017;30:495–9.

    Article  CAS  Google Scholar 

  23. Sonmez G, Shen CKF, Rubin Y, Wudl F. A red, green, and blue (RGB) polymeric electrochromic device (PECD): the dawning of the PECD era. Angew Chem Int Ed. 2004;43:1498–502.

    Article  CAS  Google Scholar 

  24. Sonmez G, Sonmez HB, Shen CKF, Jost RW, Rubin Y, Wudl F. A processable green polymeric electrochromic. Macromolecules. 2005;38:669–75.

    Article  CAS  Google Scholar 

  25. Mohebbi AR, Wudl F. Electron-accepting dithiarubicene (emeraldicene) and derivatives prepared by unprecedented nucleophilic hydrogen substitution by alkyllithium reagents. Chem Eur J. 2011;17:2642–6.

    Article  CAS  Google Scholar 

  26. Tsukamoto K, Takagi K, Nagano S, Hara M, Ie Y, Osakada K, et al. π-Extension of electron-accepting dithiarubicene with a cyano-substituted electron-withdrawing group and application in air-stable n-channel organic field effect transistors. J Mater Chem C. 2019;7:12610–8.

    Article  CAS  Google Scholar 

  27. Tsukamoto K, Takagi K, Yamamoto K, Ie Y, Fukushima T. End-functionalization of dithiarubicene: modulation of optoelectronic properties by metal-catalyzed coupling reactions and device application. J Mater Chem C. 2021;9:9520–9.

    Article  Google Scholar 

  28. Mohebbi AR, Yuen J, Fan J, Munoz C, Wang MF, Shirazi RS, et al. Emeraldicene as an acceptor moiety: balanced-mobility, ambipolar, organic thin-film transistors. Adv Mater. 2011;23:4644–8.

    Article  CAS  Google Scholar 

  29. Gaussian 09, Revision E.01. Wallingford, CT: Gaussian, Inc.; 2013 (see Supporting Information for the detail).

  30. Zhou F, Liu R, Li P, Zhang H. On the properties of S···O and S···π noncovalent interactions: the analysis of geometry, interaction energy and electron density. N J Chem. 2015;39:1611–8.

    Article  CAS  Google Scholar 

  31. Yu ZD, Lu Y, Wang JY, Pei J. Conformation control of conjugated polymers. Chem Eur J. 2020;26:16194–205.

    Article  CAS  Google Scholar 

  32. Leriche P, Blanchard P, Frère P, Levillain E, Mabon G, Roncali J. 3,4-Vinylenedioxythiophene (VDOT): a new building block for thiophene-based π-conjugated systems. Chem Commun. 2006:275–7.

  33. Sonmez G, Meng H, Wudl F. Very stable low band gap polymer for charge storage purposes and near-infrared applications. Chem Mater. 2003;15:4923–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A part of this work was financially supported by and performed under the Cooperative Research Program of “Network Joint Research Center for Materials and Devices: Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials”. The computations were performed using Research Center for Computational Science, Okazaki, Japan. KT thanks the Research Program for Next Generation Young Scientists for their support. TY is grateful to the Sakamoto Donation Foundation for financial support and to Mr. Hayashi for his kind help in setting up the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Takagi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takagi, K., Yamamori, T. & Tsukamoto, K. Oxidative (co)polymerization of dithiarubicene derivatives and electrochromic properties of narrow-bandgap conjugated polymers. Polym J 54, 1055–1062 (2022). https://doi.org/10.1038/s41428-022-00655-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00655-7

  • Springer Nature Limited

Navigation