Skip to main content
Log in

Tetra-EDOT substituted 3D electrochromic polymers with lower band gaps

  • Articles
  • Special Topic · Electrochromics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A couple of novel electrochromic materials poly(2,3,4,5-tetrakis(2,3-hydrothieno[3,4-b]dixin-5-yl)-1-methyl-1H-pyrrole) (P(t-EDOT-mPy)) and poly(5,5′,5′′,5′′′-(thiophene-2,3,4,5-tetrayl)tetrakis(2,3-dihydrothieno[3,4-b][1,4]dioxine)) (P(t-EDOT-Th)) are electrodeposited via multi-position polymerization of their tetra-EDOT substituted monomers t-EDOT-mPy and t-EDOT-Th, respectively. Compared with the linear 2D structured poly(thiophene) (E g=2.2 eV) and poly(2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)thiophene) (E g=1.7 eV), P(t-EDOT-Th) (E g=1.62 eV) has the lowest band gap. Hence, we speculate that the band gaps of the two polymers, having 3D structures, are decreased in contrast to non-substituted polymers or bi-EDOT substituted polymers, thiophene and 1-methyl-1H-pyrrole. The results indicated that P(t-EDOT-Th) thin films are more stable and show higher transmittance amid two polymers, which may find their utilization in organic optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mortimer RJ. Annu Rev Mater Res, 2011, 41: 241–268

    Article  CAS  Google Scholar 

  2. Remmele J, Shen DE, Mustonen T, Fruehauf N. ACS Appl Mater Interfaces, 2015, 7: 12001–12008

    Article  CAS  Google Scholar 

  3. (a)_Yeh MH, Lin L, Yang PK, Wang ZL. ACS Nano, 2015, 9: 4757–4765

    Article  Google Scholar 

  4. Wang Y, Runnerstrom EL, Milliron DJ. Annu Rev Chem Biomol Eng, 2016, 7: 283–304

    Article  Google Scholar 

  5. Mortimer RJ, Dyer AL, Reynolds JR. Displays, 2006, 27: 2–18

    Article  CAS  Google Scholar 

  6. Yu H, Shao S, Yan L, Meng H, He Y, Yao C, Xu P, Zhang X, Hu W, Huang W. J Mater Chem C, 2016, 4: 2269–2273

    Article  CAS  Google Scholar 

  7. Lehtimäki S, Suominen M, Damlin P, Tuukkanen S, Kvarnström C, Lupo D. ACS Appl Mater Interfaces, 2015, 7: 22137–22147

    Article  Google Scholar 

  8. Sonmez G, Meng H, Wudl F. Chem Mater, 2004, 16: 574–580

    Article  CAS  Google Scholar 

  9. Wang C, Gu P, Hu B, Zhang Q. J Mater Chem C, 2015, 3: 10055–10065

    Article  CAS  Google Scholar 

  10. Jensen J, Hösel M, Dyer AL, Krebs FC. Adv Funct Mater, 2015, 25: 2073–2090

    Article  CAS  Google Scholar 

  11. Beaujuge PM, Reynolds JR. Chem Rev, 2010, 110: 268–320

    Article  CAS  Google Scholar 

  12. Tagmouti S, Outzourhit A, Oueriagli A, Khaidar M, Elyacoubi M, Evrard R, Ameziane EL. Sol Energ Mat Sol C, 2002, 71: 9–18

    Article  CAS  Google Scholar 

  13. Lin R, Stokbro K, Madsen DN, Boubour E, Bøggild P. Thin Solid Films, 2005, 484: 334–340

    Article  CAS  Google Scholar 

  14. Roncali J, Blanchard P, Frère P. J Mater Chem, 2005, 15: 1589–1610

    Article  CAS  Google Scholar 

  15. Huang JH, Hsu CY, Hu CW, Chu CW, Ho KC. ACS Appl Mater Interfaces, 2010, 2: 351–359

    Article  CAS  Google Scholar 

  16. Agrawal V, Shahjad V, Bhardwaj D, Bhargav R, Sharma GD, Bhardwaj RK, Patra A, Chand S. Electrochim Acta, 2016, 192: 52–60

    Article  CAS  Google Scholar 

  17. Shi J, Zhu X, Xu P, Zhu M, Guo Y, He Y, Hu Z, Murtaza I, Yu H, Yan L, Goto O, Meng H. Macromol Rapid Commun, 2016, 37: 1344–1351

    Article  CAS  Google Scholar 

  18. Taerum T, Lukoyanova O, Wylie RG, Perepichka DF. Org Lett, 2009, 11: 3230–3233

    Article  CAS  Google Scholar 

  19. Xu C, Zhao J, Cui C, Wang M, Kong Y, Zhang X. J Electroanal Chem, 2012, 682: 29–36

    Article  CAS  Google Scholar 

  20. Piron F, Leriche P, Mabon G, Grosu I, Roncali J. Electrochem Commun, 2008, 10: 1427–1430

    Article  CAS  Google Scholar 

  21. Zhong YP, Gao JM, Liu P, Deng WJ. Mater Res Innov, 2015, 19: 51–54

    Article  Google Scholar 

  22. Zhang K, Tieke B, Forgie JC, Vilela F, Parkinson JA, Skabara PJ. Polymer, 2010, 51: 6107–6114

    Article  CAS  Google Scholar 

  23. Vilela F, Zhang K, Antonietti M. Energ Environ Sci, 2012, 5: 7819–7832

    Article  CAS  Google Scholar 

  24. Liu Y, Kanhere PD, Ling Wong C, Tian Y, Feng Y, Boey F, Wu T, Chen H, White TJ, Chen Z, Zhang Q. J Solid State Chem, 2010, 183: 2644–2649

    Article  CAS  Google Scholar 

  25. Gilow HM, Burton DE. J Org Chem, 1981, 46: 2221–2225

    Article  CAS  Google Scholar 

  26. Sadekar AG, Mohite D, Mulik S, Chandrasekaran N, Sotiriou-Leventis C, Leventis N. J Mater Chem, 2012, 22: 100–108

    Article  CAS  Google Scholar 

  27. Meng H, Perepichka DF, Wudl F. Angew Chem Int Ed, 2003, 42: 658–661

    Article  CAS  Google Scholar 

  28. Sotzing GA, Reddinger JL, Katritzky AR, Soloducho J, Musgrave R, Reynolds JR, Steel PJ. Chem Mater, 1997, 9: 1578–1587

    Article  CAS  Google Scholar 

  29. Li Y. J Electroanal Chem, 1997, 433: 181–186

    Article  CAS  Google Scholar 

  30. Poverenov E, Li M, Bitler A, Bendikov M. Chem Mater, 2010, 22: 4019–4025

    Article  CAS  Google Scholar 

  31. Evans DH. Chem Rev, 1990, 90: 739–751

    Article  CAS  Google Scholar 

  32. Roncali J. Chem Rev, 1992, 92: 711–738

    Article  CAS  Google Scholar 

  33. Andrieux CP, Audebert P, Hapiot P, Saveant JM. J Am Chem Soc, 1990, 112: 2439–2440

    Article  CAS  Google Scholar 

  34. Kumar A, Welsh DM, Morvant MC, Piroux F, Abboud KA, Reynolds JR. Chem Mater, 1998, 10: 896–902

    Article  CAS  Google Scholar 

  35. San Miguel L, Porter WW, Matzger AJ. Org Lett, 2007, 9: 1005–1008

    Article  CAS  Google Scholar 

  36. Durmus A, Gunbas GE, Toppare L. Chem Mater, 2007, 19: 6247–6251

    Article  CAS  Google Scholar 

  37. Sotzing GA, Reddinger JL, Reynolds JR, Steel PJ. Synth Met, 1997, 84: 199–201

    Article  CAS  Google Scholar 

  38. Ak M, Ak MS, Kurtay G, Güllü M, Toppare L. Solid State Sci, 2010, 12: 1199–1204

    Article  CAS  Google Scholar 

  39. Li M, Wei Y, Zheng J, Zhu D, Xu C. Org Electron, 2014, 15: 428–434

    Article  Google Scholar 

  40. Kim HN, Cho SM, Ah CS, Song J, Ryu H, Kim YH, Kim TY. Mater Res Bull, 2016, 82: 16–21

    Article  CAS  Google Scholar 

  41. Kim H, Park Y, Choi D, Ahn SH, Lee CS. Appl Surface Sci, 2016, 377: 370–375

    Article  CAS  Google Scholar 

  42. Knott EP, Craig MR, Liu DY, Babiarz JE, Dyer AL, Reynolds JR. J Mater Chem, 2012, 22: 4953–4962

    Article  CAS  Google Scholar 

  43. Guan S, Elmezayyen AS, Zhang F, Zheng J, Xu C. J Mater Chem C, 2016, 4: 4584–4591

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Shenzhen Key Laboratory of Organic Optoelectromagnetic Functional Materials of Shenzhen Science and Technology Plan (ZDSYS20140509094114164), the Shenzhen Peacock Program (KQTD2014062714543296), Shenzhen Science and Technology Research Grant (JCYJ20140509093817690), the Nanshan Innovation Agency Grant (KC2015ZDYF0016A), the Guangdong Key Research Project (2014B090914003, 2015B090914002), the Guangdong Talents Project, the National Basic Research Program of China (2015CB856505), the National Natural Science Foundation of China (51373075), the Guangdong Academician Workstation (2013B090400016), and the Natural Science Foundation of Guangdong Province (2014A030313800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Murtaza, I., Shao, S. et al. Tetra-EDOT substituted 3D electrochromic polymers with lower band gaps. Sci. China Chem. 60, 90–98 (2017). https://doi.org/10.1007/s11426-016-0303-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0303-0

Keywords

Navigation