Skip to main content
Log in

Hybrid π-conjugated polymers from dibenzo pentacyclic centers: precursor design, electrosynthesis and electrochromics

  • Reviews
  • Special Topic · Electrochromics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

π-Conjugated polymers (CPs) represent one of the quite important and rapidly growing branches of flexible electrochromic materials. Electrosynthesized hybrid CPs employing dibenzo pentacycles (fluorenes, carbazoles, dibenzothiophenes, and dibenzofuran) as the backbones have received considerable attention owing to their special structures and interesting electrochromic performances. Recent studies show that polymers from these structures exhibit decent contrast ratios, favorable coloration efficiencies, low switching voltages, fast response time, excellent stability, and color persistence. Intrinsically, their electrochromic properties significantly depend on fine-tailoring of precursor monomer structures, and polymerization techniques and conditions. This review devotes to showing a clear picture of the research progress of dibenzo pentacycle-centered CPs via electrochemical polymerization, including fluorenes, carbazoles, dibenzothiophenes, and dibenzofuran-based hybrid electrochromic polymers. Critical influences of the tailored precursor structures on their electropolymerization and resultant polymer performances are highlighted, aiming at providing an insight for the development of novel fused ring-based polymer electrochromic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beaujuge PM, Reynolds JR. Chem Rev, 2010, 110: 268–320

    Article  CAS  Google Scholar 

  2. Gunbas G, Toppare L. Chem Commun, 2012, 48: 1083–1101

    Article  CAS  Google Scholar 

  3. Monk PMS, Mortimer RJ, Rosseinsky DR. Electrochromism and Electrochromic Devices. Cambridge, New York: Cambridge University Press, 2007

  4. Mortimer RJ, Rosseinsky DR, Monk PMS. Electrochromic Materials and Devices. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr, 2015

  5. Mortimer RJ. Am Sci, 2013, 101: 38–45

    Article  Google Scholar 

  6. Krishnamoorthy K, Ambade AV, Kanungo M, Contractor AQ, Kumar A. J Mater Chem, 2001, 11: 2909–2911

    Article  CAS  Google Scholar 

  7. Li M, Patra A, Sheynin Y, Bendikov M. Adv Mater, 2009, 21: 1707–1711

    Article  CAS  Google Scholar 

  8. Reeves BD, Grenier CRG, Argun AA, Cirpan A, McCarley TD, Reynolds JR. Macromolecules, 2004, 37: 7559–7569

    Article  CAS  Google Scholar 

  9. Posset U, Harsch M, Rougier A, Herbig B, Schottner G, Sextl G. RSC Adv, 2012, 2: 5990–5996

    Article  CAS  Google Scholar 

  10. Reddinger JL, Sotzing GA, Reynolds JR. Chem Commun, 1996, 1777–1778

    Google Scholar 

  11. Larmat F, Reynolds JR, Reinhardt BA, Brott LL, Clarson SJ. J Polym Sci A: Polym Chem, 1997, 35: 3627–3636

    Article  CAS  Google Scholar 

  12. Venanzi M, Bocchinfuso G, Palleschi A, Abreu AS, Ferreira PMT, Queiroz MJRP. J Photochem Photobiol A, 2005, 170: 181–188

    Article  CAS  Google Scholar 

  13. Wang L, Cai D, Tang C, Wang M, Yin Z, Zheng Q. J Mater Chem C, 2015, 3: 5631–5641

    Article  CAS  Google Scholar 

  14. Zhu Y, Chen Z, Yang Y, Cai P, Chen J, Li Y, Yang W, Peng J, Cao Y. Org Electron, 2015, 23: 193–198

    Article  CAS  Google Scholar 

  15. Camurlu P, Durak T, Balan A, Toppare L. Synth Met, 2011, 161: 1898–1905

    Article  CAS  Google Scholar 

  16. Camurlu P, Durak T, Toppare L. J Electroanal Chem, 2011, 661: 359–366

    Article  CAS  Google Scholar 

  17. Lin K, Zhen S, Ming S, Xu J, Lu B. New J Chem, 2015, 39: 2096–2105

    Article  CAS  Google Scholar 

  18. Lin K, Ming S, Zhen S, Zhao Y, Lu B, Xu J. Polym Chem, 2015, 6: 4575–4587

    Article  CAS  Google Scholar 

  19. Lin K, Zhao Y, Ming S, Liu H, Zhen S, Xu J, Lu B. J Polym Sci A: Polym Chem, 2016, 54: 1468–1478

    Article  CAS  Google Scholar 

  20. Erginer M, Sezer E, Ustamehmetoglu B, Heinze J. Electrochim Acta, 2012, 67: 181–186

    Article  CAS  Google Scholar 

  21. Soloducho J, Cabaj J, Olech K, Data P, Lapkowski M. Curr Org Chem, 2013, 17: 283–295

    Article  CAS  Google Scholar 

  22. Wong KT, Chen YM, Lin YT, Su HC, Wu CC. Org Lett, 2005, 7: 5361–5364

    Article  CAS  Google Scholar 

  23. Shih PI, Chiang CL, Dixit AK, Chen CK, Yuan MC, Lee RY, Chen CT, Diau EWG, Shu CF. Org Lett, 2006, 8: 2799–2802

    Article  CAS  Google Scholar 

  24. Reghu RR, Grazulevicius JV, Simokaitiene J, Matulaitis T, Miasojedovas A, Kazlauskas K, Jursenas S, Data P, Lapkowski M, Zassowski P. Dyes Pigm, 2013, 97: 412–422

    Article  CAS  Google Scholar 

  25. Içli M, Cihaner A, Önal AM. Electrochim Acta, 2007, 52: 8039–8043

    Article  Google Scholar 

  26. Wu W, Tang R, Li Q, Li Z. Chem Soc Rev, 2015, 44: 3997–4022

    Article  CAS  Google Scholar 

  27. Zheng YQ, Wang JY, Pei J. Sci China Chem, 2015, 58: 937–946

    Article  CAS  Google Scholar 

  28. Chen S, Hu A. Sci China Chem, 2015, 58: 1710–1723

    Article  CAS  Google Scholar 

  29. Lei T, Wang JY, Pei J. Chem Mater, 2014, 26: 594–603

    Article  CAS  Google Scholar 

  30. Yi Z, Wang S, Liu Y. Adv Mater, 2015, 27: 3589–3606

    Article  CAS  Google Scholar 

  31. Tsuie B, Reddinger JL, Sotzing GA, Soloducho J, Katritzky AR, Reynolds JR. J Mater Chem, 1999, 9: 2189–2200

    Article  CAS  Google Scholar 

  32. Usluer O, Koyuncu S, Demic S, Janssen RAJ. J Polym Sci B: Polym Phys, 2011, 49: 333–341

    Article  CAS  Google Scholar 

  33. Katsis D, Geng YH, Ou JJ, Culligan SW, Trajkovska A, Chen SH, Rothberg LJ. Chem Mater, 2002, 14: 1332–1339

    Article  CAS  Google Scholar 

  34. Ma SY, Fu YY, Ni DB, Mao J, Xie ZY, Tu GL. Chem Commun, 2012, 48: 11847–11849

    Article  CAS  Google Scholar 

  35. Eok Jang S, Ok Jeon S, Joo Cho Y, Soo Yook K, Yeob Lee J. J Lumin, 2010, 130: 2184–2187

    Article  Google Scholar 

  36. Nie G, Yang H, Chen J, Bai Z. Org Electron, 2012, 13: 2167–2176

    Article  CAS  Google Scholar 

  37. Zhou M, Heinze J. Electrochim Acta, 1999, 44: 1733–1748

    Article  CAS  Google Scholar 

  38. Günes A, Cihaner A, Önal AM. Electrochim Acta, 2013, 89: 339–345

    Article  Google Scholar 

  39. Loganathan K, Huang F, Pickup PG. Electrochim Acta, 2006, 52: 15–23

    Article  CAS  Google Scholar 

  40. Loganathan K, Pickup PG. Electrochim Acta, 2007, 52: 4685–4690

    Article  CAS  Google Scholar 

  41. Bezgin B, Önal AM. Electrochim Acta, 2010, 55: 779–784

    Article  CAS  Google Scholar 

  42. Arbas BB, Kivrak A, Önal AM. Electrochim Acta, 2011, 58: 223–230

    Article  Google Scholar 

  43. Grisorio R, Piliego C, Striccoli M, Cosma P, Fini P, Gigli G, Mastrorilli P, Suranna GP, Nobile CF. J Phys Chem C, 2008, 112: 20076–20087

    Article  CAS  Google Scholar 

  44. Rault-Berthelot J, Raoult E, Le Floch F. J Electroanal Chem, 2003, 546: 29–34

    Article  CAS  Google Scholar 

  45. DuBois CJ, Reynolds JR. Adv Mater, 2002, 14: 1844–1846

    Article  CAS  Google Scholar 

  46. Duan C, Zhang K, Zhong C, Huang F, Cao Y. Chem Soc Rev, 2013, 42: 9071–9104

    Article  CAS  Google Scholar 

  47. Duan C, Huang F, Cao Y. Polym Chem, 2015, 6: 8081–8098

    Article  CAS  Google Scholar 

  48. Lu B, Zhen S, Zhang S, Xu J, Zhao G. Polym Chem, 2014, 5: 4896–4908

    Article  CAS  Google Scholar 

  49. Jiang Q, Zhen S, Mo D, Lin K, Ming S, Wang Z, Liu C, Xu J, Yao Y, Duan X, Zhu D, Shi H. J Polym Sci A: Polym Chem, 2016, 54: 325–334

    Article  CAS  Google Scholar 

  50. Redecker M, Bradley DDC, Inbasekaran M, Woo EP. Appl Phys Lett, 1998, 73: 1565–1567

    Article  CAS  Google Scholar 

  51. Yue R, Lu B, Xu J, Chen S, Liu C. Polym J, 2011, 43: 531–539

    Article  CAS  Google Scholar 

  52. Roncali J, Garnier F, Lemaire M, Garreau R. Synth Met, 1986, 15: 323–331

    Article  CAS  Google Scholar 

  53. Carbas BB, Önal AM. Electrochim Acta, 2012, 66: 38–44

    Article  CAS  Google Scholar 

  54. Kivrak A, Carbas BB, Zora M, Önal AM. React Funct Polym, 2012, 72: 613–620

    Article  CAS  Google Scholar 

  55. Xie LH, Liu F, Tang C, Hou XY, Hua YR, Fan QL, Huang W. Org Lett, 2006, 8: 2787–2790

    Article  CAS  Google Scholar 

  56. Vak D, Jo J, Ghim J, Chun C, Lim B, Heeger AJ, Kim DY. Macromolecules, 2006, 39: 6433–6439

    Article  CAS  Google Scholar 

  57. McFarlane SL, Coumont LS, Piercey DG, McDonald R, Veinot JGC. Macromolecules, 2008, 41: 7780–7782

    Article  CAS  Google Scholar 

  58. Cui Y, Zhang X, Jenekhe SA. Macromolecules, 1999, 32: 3824–3826

    Article  CAS  Google Scholar 

  59. Morin JF, Leclerc M. Macromolecules, 2002, 35: 8413–8417

    Article  CAS  Google Scholar 

  60. Özkut M, Algi MP, Öztas Z, Algi F, Önal AM, Cihaner A. Macromolecules, 2012, 45: 729–734

    Article  Google Scholar 

  61. Kerszulis JA, Amb CM, Dyer AL, Reynolds JR. Macromolecules, 2014, 47: 5462–5469

    Article  CAS  Google Scholar 

  62. Wang HM, Hsiao SH, Liou GS, Sun CH. J Polym Sci A: Polym Chem, 2010, 48: 4775–4789

    Article  CAS  Google Scholar 

  63. Blouin N, Leclerc M. Acc Chem Res, 2008, 41: 1110–1119

    Article  CAS  Google Scholar 

  64. Morin JF, Leclerc M, Adès D, Siove A. Macromol Rapid Commun, 2005, 26: 761–778

    Article  Google Scholar 

  65. Koyuncu S, Gultekin B, Zafer C, Bilgili H, Can M, Demic S, Icli S. Electrochim Acta, 2009, 54: 5694–5702

    Article  CAS  Google Scholar 

  66. Wang B, Zhao J, Cui C, Liu J, He Q. Sol Energ Mat Sol C, 2012, 98: 161–167

    Article  CAS  Google Scholar 

  67. Baycan Koyuncu F. Electrochim Acta, 2012, 68: 184–191

    Article  Google Scholar 

  68. Hsiao SH, Hsueh JC. J Electroanal Chem, 2015, 758: 100–110

    Article  CAS  Google Scholar 

  69. Data P, Pander P, Lapkowski M, Swist A, Soloducho J, Reghu RR, Grazulevicius JV. Electrochim Acta, 2014, 128: 430–438

    Article  CAS  Google Scholar 

  70. Wang K, Zhang T, Hu Y, Yang W, Shi Y. Electrochim Acta, 2014, 130: 46–51

    Article  CAS  Google Scholar 

  71. Sezer E, Saraç AHS, Parlak EA. J Appl Electrochem, 2003, 33: 1223–1231

    Article  Google Scholar 

  72. Yang CJ, Jenekhe SA. Macromolecules, 1995, 28: 1180–1196

    Article  CAS  Google Scholar 

  73. Simionescu CI, Cianga I, Ivanoiu M, Airinei A, Grigoras M, Radu I. Eur Polymer J, 1999, 35: 1895–1905

    Article  CAS  Google Scholar 

  74. Is OD, Koyuncu FB, Koyuncu S, Ozdemir E. Polymer, 2010, 51: 1663–1669

    Article  CAS  Google Scholar 

  75. Koyuncu S, Kaya, Koyuncu FB, Ozdemir E. Synth Met, 2009, 159: 1034–1042

    Article  CAS  Google Scholar 

  76. Sotzing GA, Reddinger JL, Katritzky AR, Soloducho J, Musgrave R, Reynolds JR, Steel PJ. Chem Mater, 1997, 9: 1578–1587

    Article  CAS  Google Scholar 

  77. Lapkowski M, Data P, Nowakowska-Oleksy A, Soloducho J, Roszak S. Mater Chem Phys, 2012, 131: 757–763

    Article  CAS  Google Scholar 

  78. Data P, Zassowski P, Lapkowski M, Domagala W, Krompiec S, Flak T, Penkala M, Swist A, Soloducho J, Danikiewicz W. Electrochim Acta, 2014, 122: 118–129

    Article  CAS  Google Scholar 

  79. Hu B, Lv X, Sun J, Bian G, Ouyang M, Fu Z, Wang P, Zhang C. Org Electron, 2013, 14: 1521–1530

    Article  CAS  Google Scholar 

  80. Hu B, Zhang Y, Lv X, Ouyang M, Fu Z, Zhang C. J Electroanal Chem, 2013, 689: 291–296

    Article  CAS  Google Scholar 

  81. Oguztürk HE, Tirkes S, Önal AM. J Electroanal Chem, 2015, 750: 1–8

    Article  Google Scholar 

  82. Padilla J, Seshadri V, Filloramo J, Mino WK, Mishra SP, Radmard B, Kumar A, Sotzing GA, Otero TF. Synth Met, 2007, 157: 261–268

    Article  CAS  Google Scholar 

  83. Gaupp CL, Reynolds JR. Macromolecules, 2003, 36: 6305–6315

    Article  CAS  Google Scholar 

  84. Karon K, Lapkowski M, Juozas G. Electrochim Acta, 2014, 123: 176–182

    Article  CAS  Google Scholar 

  85. Kawabata K, Goto H. Synth Met, 2010, 160: 2290–2298

    Article  CAS  Google Scholar 

  86. Baycan Koyuncu F, Koyuncu S, Ozdemir E. Org Electron, 2011, 12: 1701–1710

    Article  Google Scholar 

  87. Amb CM, Kerszulis JA, Thompson EJ, Dyer AL, Reynolds JR. Polym Chem, 2011, 2: 812–814

    Article  CAS  Google Scholar 

  88. Lévesque I, Bertrand PO, Blouin N, Leclerc M, Zecchin S, Zotti G, Ratcliffe CI, Klug DD, Gao X, Gao F, Tse JS. Chem Mater, 2007, 19: 2128–2138

    Article  Google Scholar 

  89. Zong K, Madrigal L, Groenendaal LB, Reynolds JR. Chem Commun, 2002, 2498–2499

    Google Scholar 

  90. Varis S, Ak M, Tanyeli C, Akhmedov IM, Toppare L. Eur Polymer J, 2006, 42: 2352–2360

    Article  CAS  Google Scholar 

  91. Guo T, Yu L, Zhao B, Ying L, Wu H, Yang W, Cao Y. J Polym Sci A: Polym Chem, 2015, 53: 1043–1051

    Article  CAS  Google Scholar 

  92. Xiong J, Zhu W, Li H, Ding W, Chao Y, Wu P, Xun S, Zhang M, Li H. Green Chem, 2015, 17: 1647–1656

    Article  CAS  Google Scholar 

  93. Lin K, Ming S, Zhen S, Liu H, Chen S, Zhao Y, Gu H, Xu J, Lu B. J Solid State Electrochem, 2016, 20: 1369–1376

    Article  CAS  Google Scholar 

  94. Qiao Y, Wei Z, Risko C, Li H, Brédas JL, Xu W, Zhu D. J Mater Chem, 2012, 22: 1313–1325

    Article  CAS  Google Scholar 

  95. Heywang G, Jonas F. Adv Mater, 1992, 4: 116–118

    Article  CAS  Google Scholar 

  96. Patra S, Barai K, Munichandraiah N. Synth Met, 2008, 158: 430–435

    Article  CAS  Google Scholar 

  97. Kiefer R, Bowmaker GA, Cooney RP, Kilmartin PA, Travas-Sejdic J. Electrochim Acta, 2008, 53: 2593–2599

    Article  CAS  Google Scholar 

  98. Han C, Zhao Y, Xu H, Chen J, Deng Z, Ma D, Li Q, Yan P. Chem Eur J, 2011, 17: 5800–5803

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51303073, 51463008, 51572117), the Ganpo Outstanding Talents 555 projects (2013), the National Science Fund for Distinguished Young Scholars in Jiangxi Province, Key Project of Jiangxi Educational Committee (GJJ150795), the Natural Science Foundation of Jiangxi Province (20161BAB216130), Scientific Fund of Jiangxi Science & Technology Normal University (2014QNBJRC003), Jiangxi Science & Technology Normal University Program for Scientific Research Innovation Team (2015CXTD001), and Scientific Research Foundation for Doctors in Jiangxi Science & Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoyang Lu or Jingkun Xu.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, K., Chen, S., Lu, B. et al. Hybrid π-conjugated polymers from dibenzo pentacyclic centers: precursor design, electrosynthesis and electrochromics. Sci. China Chem. 60, 38–53 (2017). https://doi.org/10.1007/s11426-016-0298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0298-2

Keywords

Navigation