Skip to main content
Log in

Understanding cellulose dissolution: effect of the cation and anion structure of ionic liquids on the solubility of cellulose

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The effect of ionic liquids (ILs) on the solubility of cellulose was investigated by changing their anions and cations. The structural variation included 11 kinds of cations in combination with 4 kinds of anions. The interaction between the IL and cellobiose, the repeating unit of cellulose, was clarified through nuclear magnetic resonance (NMR) spectroscopy. The reason for different dissolving capabilities of various ILs was revealed. The hydrogen bonding interaction between the IL and hydroxyl was the major force for cellulose dissolution. Both the anion and cation in the IL formed hydrogen bonds with cellulose. Anions associated with hydrogen atoms of hydroxyls, and cations favored the formation of hydrogen bonds with oxygen atoms of hydroxyls by utilizing activated protons in imidazolium ring. Weakening of either the hydrogen bonding interaction between the anion and cellulose, or that between the cation and cellulose, or both, decreases the capability of ILs to dissolve cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klemm D, Heublein B, Fink HP, Bohn A. Angew Chem Int Ed, 2005, 44: 3358–3393

    Article  CAS  Google Scholar 

  2. Zhang JM, Zhang J. Acta Polymerica Sinica, 2010, 12: 1376–1398

    Article  Google Scholar 

  3. Ranke J, Stolte S, Störmann R, Arning J, Jastorff B. Chem Rev, 2007, 107: 2183–2206

    Article  CAS  Google Scholar 

  4. Wang H, Gurau G, Rogers RD. Chem Soc Rev, 2012, 41: 1519–1537

    Article  CAS  Google Scholar 

  5. Mai NL, Koo YM. ACS Sustain Chem Eng, 2016, 4: 541–547

    Article  CAS  Google Scholar 

  6. Badgujar KC, Bhanage BM. Bioresour Technol, 2015, 178: 2–18

    Article  CAS  Google Scholar 

  7. Miao JJ, Sun HB, Yu YQ, Song XL, Zhang LP. RSC Adv, 2014, 4: 36721–36724

    Article  CAS  Google Scholar 

  8. Yang YL, Song LC, Peng C, Liu EH, Xie HB. Green Chem, 2015, 17: 2758–2763

    Article  CAS  Google Scholar 

  9. Hauru LKJ, Hummel M, Nieminen K, Michud A, Sixta H. Soft Matter, 2016, 12: 1487–1495

    Article  CAS  Google Scholar 

  10. Kostag M, Liebert T, Heinze T. Macromol Rapid Commun, 2014, 35: 1419–1422

    Article  CAS  Google Scholar 

  11. Raut DG, Sundman O, Su WQ, Virtanen P, Sugano Y, Kordas K, Mikkola JP. Carbohyd Polym, 2015, 130: 18–25

    Article  CAS  Google Scholar 

  12. Schenzel A, Hufendiek A, Barner-Kowollik C, Meier MAR. Green Chem, 2014, 16: 3266–3271

    Article  CAS  Google Scholar 

  13. Ma Y, Hummel M, Määttänen M, Särkilahti A, Harlin A, Sixta H. Green Chem, 2016, 18: 858–866

    Article  CAS  Google Scholar 

  14. Xie HB, Yu X, Yang YL, Zhao ZBK. Green Chem, 2014, 16: 2422–2427

    Article  CAS  Google Scholar 

  15. Zhang JM, Lv YX, Luo N, Wu J, Yu J, He JS, Zhang J. Chinese Polym Bull, 2011, 10: 138–153

    Google Scholar 

  16. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. J Am Chem Soc, 2002, 124: 4974–4975

    Article  CAS  Google Scholar 

  17. Remsing RC, Swatloski RP, Rogers RD, Moyna G. Chem Commun, 2006, 1271–1273

    Google Scholar 

  18. Remsing RC, Hernandez G, Swatloski RP, Massefski WW, Rogers RD, Moyna G. J Phys Chem B, 2008, 112: 11071–11078

    Article  CAS  Google Scholar 

  19. Youngs TGA, Holbrey JD, Deetlefs M, Nieuwenhuyzen M, Costa Gomes MF, Hardacre C. ChemPhysChem, 2006, 7: 2279–2281

    Article  CAS  Google Scholar 

  20. Youngs TGA, Hardacre C, Holbrey JD. J Phys Chem B, 2007, 111: 13765–13774

    Article  CAS  Google Scholar 

  21. Youngs TGA, Holbrey JD, Mullan CL, Norman SE, Lagunas MC, D’Agostino C, Mantle MD, Gladden LF, Bowron DT, Hardacre C. Chem Sci, 2011, 2: 1594–1605

    Article  CAS  Google Scholar 

  22. de Oliveira HFN, Rinaldi R. ChemSusChem, 2015, 8: 1577–1584

    Article  Google Scholar 

  23. Liu HB, Cheng G, Kent M, Stavila V, Simmons BA, Sale KL, Singh S. J Phys Chem B, 2012, 116: 8131–8138

    Article  CAS  Google Scholar 

  24. Pinkert A. J Chem Eng Data, 2012, 57: 1338–1340

    Article  CAS  Google Scholar 

  25. Huo F, Liu ZP, Wang WC. J Phys Chem B, 2013, 117, 11780–11792

    Article  CAS  Google Scholar 

  26. Payal RS, Balasubramanian S. Phys Chem Chem Phys, 2014, 16: 17458–17465

    Article  CAS  Google Scholar 

  27. Rabideau BD, Agarwal A, Ismail AE. J Phys Chem B, 2014, 118, 1621–1629

    Article  CAS  Google Scholar 

  28. Hassan ESRE, Mutelet F, Bouroukba. Carbohyd Polym, 2015, 127: 316–324

    Article  CAS  Google Scholar 

  29. Benedetto A, Ballone P. ACS Sustain Chem Eng, 2016, 4: 392–412

    Article  CAS  Google Scholar 

  30. Zhang H, Wu J, Zhang J, He JS. Macromolecules, 2005, 38: 8272–8277

    Article  CAS  Google Scholar 

  31. Zhang JM, Zhang H, Wu J, Zhang J, He JS, Xiang JF. Phys Chem Chem Phys, 2010, 12: 1941–1947

    Article  CAS  Google Scholar 

  32. Zhang JM, Zhang H, Wu J, Zhang J, He JS, Xiang JF. Phys Chem Chem Phys, 2010, 12: 14829–14830

    Article  CAS  Google Scholar 

  33. Liu Z, Wang H, Li ZX, Lu XM, Zhang XP, Zhang SJ, Zhou KB. Mater Chem Phys, 2011, 128: 220–227

    Article  CAS  Google Scholar 

  34. Payal RS, Bharath R, Periyasamy G, Balasubramanian S. J Phys Chem B, 2012, 116: 833–840

    Article  CAS  Google Scholar 

  35. Li J, Lu Y, Yang DJ, Sun QF, Liu YX, Zhao HJ. Biomacromolecules, 2011, 12: 1860–1867

    Article  CAS  Google Scholar 

  36. Lu BL, Xu AR, Wang JJ. Green Chem, 2014, 16: 1326–1335

    Article  CAS  Google Scholar 

  37. Xu AR, Cao LL, Wang BJ. Carbohyd Polym, 2015, 125: 249–254

    Article  CAS  Google Scholar 

  38. Annegret S, Martin S, Bernd O, Klemens M. Sci China Chem, 2012, 55: 1663–1670

    Article  Google Scholar 

  39. Pinkert A, Marsh KN, Pang SS. Ind Eng Chem Res, 2010, 49: 11121–11130

    Article  CAS  Google Scholar 

  40. Cho HM, Gross AS, Chu JW. J Am Chem Soc, 2011, 133: 14033–14041

    Article  CAS  Google Scholar 

  41. Gross AS, Bell AT, Chu JW. J Phys Chem B, 2011, 115: 13433–13440

    Article  CAS  Google Scholar 

  42. Muraoka J, Kamiya N, Ito Y. J Mol Liq, 2013, 182: 76–78

    Article  CAS  Google Scholar 

  43. Lovell CS, Walker A, Damion RA, Radhi A, Tanner SF, Budtova T, Ries ME. Bomacromolecules, 2010, 11: 2927–2935

    Article  CAS  Google Scholar 

  44. Ries ME, Radhi A, Keating AS, Parker O, Budtova T. Biomacromolecules, 2014, 15: 609–617

    Article  CAS  Google Scholar 

  45. Sun XF, Tian QQ, Xue ZM, Zhang YW, Mu TC. RSC Adv, 2014, 4: 30282–30291

    Article  CAS  Google Scholar 

  46. Kathirgamanathan K, Grigsby WJ, Al-Hakkak J, Edmonds NR. Int J Polym Sci, 2015: 958653

    Google Scholar 

  47. Okushita K, Chikayama E, Kikuchi J. Biomacromolecules, 2012, 13: 1323–1330

    Article  CAS  Google Scholar 

  48. Chang HC, Zhang RL, Hsu DT. Phys Chem Chem Phys, 2015, 17: 27573–27578

    Article  CAS  Google Scholar 

  49. Ranu BC, Banerjee S. Org Lett, 2005, 7: 3049–3052

    Article  CAS  Google Scholar 

  50. Gericke M, Liebert T, El Seoud OA, Heinze T. Macromol Mater Eng, 2011, 296: 483–493

    Article  CAS  Google Scholar 

  51. Barthel S, Heinze T. Green Chem, 2006, 8: 301–306

    Article  CAS  Google Scholar 

  52. Fukaya Y, Sugimoto A, Ohno H. Biomacromolecules, 2006, 7: 3295–3297

    Article  CAS  Google Scholar 

  53. Ohno H, Fukaya Y. Chem Lett, 2009, 38: 2–7

    Article  CAS  Google Scholar 

  54. Hauru LKJ, Hummel M, King AWT, Kilpeläinen I, Sixta H. Biomacromolecules, 2012, 13: 2896–2905

    Article  CAS  Google Scholar 

  55. Cruz H, Fanselow M, Holbrey JD, Seddon KR. Chem Commun, 2012, 48: 5620–5622

    Article  CAS  Google Scholar 

  56. Bonhôte P, Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzel M. Inorg Chem, 1996, 35: 1168–1178

    Article  Google Scholar 

  57. Singh T, Kumar A. J Phys Chem B, 2007, 111: 7843–7851

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Electronic supplementary material

11426_2016_269_MOESM1_ESM.doc

Understanding cellulose dissolution: Effect of the cation and anion structure of ionic liquids on the solubility of cellulose

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xu, L., Yu, J. et al. Understanding cellulose dissolution: effect of the cation and anion structure of ionic liquids on the solubility of cellulose. Sci. China Chem. 59, 1421–1429 (2016). https://doi.org/10.1007/s11426-016-0269-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0269-5

Keywords

Navigation