Skip to main content
Log in

Enhanced production of poly-3-hydroxybutyrate by recombinant Escherichia coli containing NAD kinase and phbCAB operon

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

With the help of Tn5 transposon technique, gene yfjB encoding NAD kinase in Escherichia coli (E. coli) was inserted into chromosome of recombinant E. coli polyhydroxybutyrate (PHB) containing PHB synthesis operon integrated in the host genome. After successful transposition of an extra yfjB gene copy into genome, the selected recombinant named E. coli PHBTY4 showed stronger NAD kinase activity than that of E. coli PHB. Shake flask studies suggested that both cell dry weight and PHB accumulation were significantly increased in E. coli PHBTY4 compared with that of the control. E. coli PHBTY4 produced approximately 23 g/L PHB compared with its control which synthesized only 10 g/L PHB when grown under the same conditions in a 6 L fermentor after 32 h of cultivation. In addition, E. coli PHBTY4 maintained high genetic stability during the cultivation processes. These results revealed a practical method to construct genetically stable strains harboring extra NAD kinase gene to enhance NADP(H)-dependent bio-reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen GQ. Chem Soc Rev, 2009, 38: 2434–2446

    Article  CAS  Google Scholar 

  2. Chen GQ, Patel MK. Chem Rev, 2012, 112: 2082–2099

    Article  CAS  Google Scholar 

  3. Cao Q, Zhang J, Liu H, Wu Q, Chen J, Chen GQ. Biomaterials, 2014, 35: 8273–8283

    Article  CAS  Google Scholar 

  4. Abraham GA, Gallardo A, San Roman J, Olivera ER, Jodra R, Garcia B, Minambres B, Garcia JL, Luengo JM. Biomacromolecules, 2001, 2: 562–567

    Article  CAS  Google Scholar 

  5. Shen R, Cai L, Meng D, Wu L, Guo K, Dong G, Liu L, Chen J, Wu Q, Chen G. Sci China Life Sci, 2014, 57: 4–10

    Article  CAS  Google Scholar 

  6. Tan D, Xue YS, Aibaidula G, Chen GQ. Bioresour Technol, 2011, 102: 8130–8136

    Article  CAS  Google Scholar 

  7. Aldor IS, Keasling JD. Curr Opin Biotechnol, 2003, 14: 475–483

    Article  CAS  Google Scholar 

  8. Andreessen B, Lange AB, Robenek H, Steinbuchel A. Appl Environ Microbiol, 2010, 76: 622–626

    Article  CAS  Google Scholar 

  9. Meng DC, Wang Y, Wu LP, Shen R, Chen JC, Wu Q, Chen GQ. Metab Eng, 2015, 29: 189–195

    Article  CAS  Google Scholar 

  10. Liang Q, Zhang H, Li S, Qi Q. Appl Microbiol Biotechnol, 2011, 89: 57–62

    Article  CAS  Google Scholar 

  11. Keasling JD. ACS Chem Biol, 2008, 3: 64–76

    Article  CAS  Google Scholar 

  12. Wang T, Ma X, Zhu H, Li A, Du G, Chen J. Appl Microbiol Biotechnol, 2012, 93: 1853–1863

    Article  CAS  Google Scholar 

  13. Friehs K. Adv Biochem Eng Biotechnol, 2004, 86: 47–82

    CAS  Google Scholar 

  14. Tyo KE, Ajikumar PK, Stephanopoulos G. Nat Biotechnol, 2009, 27: 760–765

    Article  CAS  Google Scholar 

  15. Lemuth K, Steuer K, Albermann C. Microb Cell Fact, 2011, 10: 29

    Article  CAS  Google Scholar 

  16. Yin J, Fu XZ, Wu Q, Chen JC, Chen GQ. Appl Microbiol Biotechnol, 2014, 98: 8987–8997

    Article  CAS  Google Scholar 

  17. Yin J, Wang H, Fu XZ, Gao X, Wu Q, Chen GQ. Appl Microbiol Biotechnol, 2015, 99: 5523–5534

    Article  CAS  Google Scholar 

  18. Haldimann A, Wanner BL. J Bacteriol, 2001, 183: 6384–6393

    Article  CAS  Google Scholar 

  19. Kuhlman TE, Cox EC. Nucleic Acids Res, 2010, 38: e92

    Article  Google Scholar 

  20. Reznikoff WS. Annu Rev Microbiol, 1993, 47: 945–963

    Article  CAS  Google Scholar 

  21. Dulermo R, Onodera T, Coste G, Passot F, Dutertre M, Porteron M, Confalonieri F, Sommer S, Pasternak C. PLoS One, 2015, 10: e0124358

    Article  Google Scholar 

  22. Xia Z, Zhang W, Lei L, Liu X, Wei HL. Appl Microbiol Biotechnol, 2015, 99: 6503–6514

    Article  CAS  Google Scholar 

  23. Yu BJ, Kim C. Methods Mol Biol, 2008, 416: 261–277

    Article  CAS  Google Scholar 

  24. Li ZJ, Cai L, Wu Q, Chen GQ. Appl Microbiol Biotechnol, 2009, 83: 939–947

    Article  CAS  Google Scholar 

  25. Fukui T, Yoshimoto A, Matsumoto M, Hosokawa S, Saito T. Arch Microbiol, 1976, 110: 149–156

    Article  CAS  Google Scholar 

  26. Reynen M, Reipen I, Sahm H, Sprenger GA. Mol Gen Genet, 1990, 223: 335–341

    Article  CAS  Google Scholar 

  27. Wu J, Xu J, Hong Q, Li S. Wei Sheng Wu Xue Bao, 2008, 48: 45–50

    Google Scholar 

  28. de Lorenzo V, Herrero M, Jakubzik U, Timmis KN. J Bacteriol, 1990, 172: 6568–6572

    Article  Google Scholar 

  29. Datsenko KA, Wanner BL. Proc Natl Acad Sci USA, 2000, 97: 6640–6645

    Article  CAS  Google Scholar 

  30. Yanisch-Perron C, Vieira J, Messing J. Gene, 1985, 33: 103–119

    Article  CAS  Google Scholar 

  31. McGuinness ET, Butler JR. Int J Biochem, 1985, 17: 1–11

    Article  CAS  Google Scholar 

  32. Kawai S, Mori S, Mukai T, Hashimoto W, Murata K. Eur J Biochem, 2001, 268: 4359–4365

    Article  CAS  Google Scholar 

  33. Shi F, Li K, Huan X, Wang X. Appl Biochem Biotechnol, 2013, 171: 504–521

    Article  CAS  Google Scholar 

  34. Higashitani A, Higashitani N, Yasuda S, Horiuchi K. Nucleic Acids Res, 1994, 22: 2426–2427

    Article  CAS  Google Scholar 

  35. Martin VJ, Mohn WW. J Microbiol Methods, 1999, 35: 163–166

    Article  CAS  Google Scholar 

  36. Grose JH, Joss L, Velick SF, Roth JR. Proc Natl Acad Sci USA, 2006, 103: 7601–7606

    Article  CAS  Google Scholar 

  37. Lim SJ, Jung YM, Shin HD, Lee YH. J Biosci Bioeng, 2002, 93: 543–549

    Article  CAS  Google Scholar 

  38. Simon R, Priefer U, Pühler A. Nat Biotechnol, 1983, 1: 784–791

    Article  CAS  Google Scholar 

  39. Cong YG, Xu QW. Acta Academiae Medicinae Militaris Tertiae, 2004, 26: 1145–1147

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingying Guo or Guo-Qiang Chen.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Fang, L., Li, Z. et al. Enhanced production of poly-3-hydroxybutyrate by recombinant Escherichia coli containing NAD kinase and phbCAB operon. Sci. China Chem. 59, 1390–1396 (2016). https://doi.org/10.1007/s11426-016-0194-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0194-x

Keywords

Navigation