Skip to main content
Log in

All-solution-processed PIN architecture for ultra-sensitive and ultra-flexible organic thin film photodetectors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An ideal organic thin film photodetectors (OTFPs) should adopt a hierarchical, multilayer p-type/blend-type/n-type (PIN) structure, with each layer having a specific purpose which could greatly improve the exciton dissociation while guarantee efficient charge transport. However, for the traditional layer-by-layer solution fabrication procedure, the solvent used can induce organic material mixing and molecular disordering between each layer. Hence, such architecture for OTFPs can now only be formed via thermal evaporation. In this paper, a contact-film-transfer method is demonstrated to all-solution processing organic PIN OTFPs on flexible substrates. The fabricated PIN OTFPs exhibit high photoresponse and high stability under continuous mechanical bending. Hence, the method we described here should represent an important step in the development of OTFPs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baeg KJ, Binda M, Natali D, Caironi M, Noh YY. Adv Mater, 2013, 25: 4267–4295

    Google Scholar 

  2. Martino N, Ghezzi D, Benfenati F, Lanzani G, Antognazza MR. J Mater Chem B, 2013, 1: 3768–3780

    Article  Google Scholar 

  3. Jana MK, Chithaiah P, Murali B, Krupanidhi SB, Biswas K, Rao CNR. J Mater Chem C, 2013, 1: 6184–6187

    Article  Google Scholar 

  4. Guo F, Yang B, Yuan Y, Xiao Z, Dong Q, Bi Y, Huang J. Nat Nanotech, 2012, 7: 798–802

    Article  Google Scholar 

  5. Hu L, Chen M, Shan W, Zhan T, Liao M, Fang X, Hu X, Wu L. Adv Mater, 2012, 24: 5872–5877

    Google Scholar 

  6. Jin Z, Gao L, Zhou Q, Wang J. Sci Rep, 2014, 4: 4268

    Google Scholar 

  7. Jin Z, Wang J. J Mater Chem C, 2014, 2: 1966–1970

    Google Scholar 

  8. Sun Z, Liu Z, Li J, Tai G, Lau SP, Yan F. Adv Mater, 2012, 24: 5878–5883

    Google Scholar 

  9. Chitara B, Panchakarla LS, Krupanidhi SB, Rao CNR. Adv Mater, 2011, 23: 5419–5424

    Google Scholar 

  10. Zhang BY, Liu T, Meng B, Li X, Liang G, Hu X, Wang QJ. Nat Commun, 2013, 4: 1811

    Article  Google Scholar 

  11. Zhou Y, Wang L, Wang J, Pei J, Cao Y. Adv Mater, 2008, 20: 3745–3749

    Google Scholar 

  12. Jin Z, Wang J. Appl Phys Lett, 2013, 102: 053304

    Article  Google Scholar 

  13. Jin Z, Wang J. Sci Rep, 2014, 4: 5331

    CAS  Google Scholar 

  14. Campana A, Cramer T, Simon DT, Berggren M, Biscarini F. Adv Mater, 2014, 26: 3874–3878

    Google Scholar 

  15. Shin M, Song JH, Lim GH, Lim B, Park JJ, Jeong U. Adv Mater, 2014, 26: 3706–3711

    Google Scholar 

  16. Tee BCK, Wang C, Allen R, Bao Z. Nat Nanotech, 2012, 7: 825–832

    Article  Google Scholar 

  17. Jeong JW, Huh JW, Lee JI, Chu HY, Pak JJ, Ju BK. Thin Solid Films, 2010, 518: 6343–6347

    Google Scholar 

  18. Gao J, Hegmann FA. Appl Phys Lett, 2008, 93: 223306

    Article  Google Scholar 

  19. Peet J, Soci C, Coffin RC, Nguyen TQ, Mikhailovsky A, Moses D, Bazan GC. Appl Phys Lett, 2006, 89: 252105

    Article  Google Scholar 

  20. Li S, Xue D, Xu W, Feng Y, Wang J, Zhang G, Meng X, Wang C, Song Y, Shu C. J Mater Chem C, 2014, 2: 1500–1504

    Google Scholar 

  21. Liao HC, Hsu CP, Wu MC, Lu CF, Su WF. Anal Chem, 2013, 85: 9305–9311

    Google Scholar 

  22. Günes S, Neugebauer H, Sariciftci NS. Chem Rev, 2007, 107: 1324–1338

    Article  Google Scholar 

  23. Blom PWM, Mihailetchi VD, Koster LJA, Markov DE. Adv Mater, 2007, 19: 1551–4

    Article  CAS  Google Scholar 

  24. Erb T, Zhokhavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec CJ. Adv Funct Mater, 2005, 15: 1551–1566

    Article  Google Scholar 

  25. Jin Z, Wang J. J Mater Chem C, 2013, 1: 1193–1196

    Google Scholar 

  26. Tada A, Geng Y, Wei Q, Hashimoto K, Tajima K. Nat Mater, 2011, 10: 450–455

    Article  Google Scholar 

  27. Bao Z, Dodabalapur A, Lovinger AJ. Appl Phys Lett, 1996, 69: 4108

    Article  CAS  Google Scholar 

  28. Wei Q, Miyanishi S, Tajima K, Hashimoto K. ACS Appl Mater Interf, 2009, 1: 2660–2666

    Google Scholar 

  29. Wei Q, Tajima K, Hashimoto K. ACS Appl Mater Interf, 2009, 1: 1865–4

    Article  CAS  Google Scholar 

  30. Dang MT, Hirsch L, Wantz G. Adv Mater, 2011, 23: 1865–1868

    Article  Google Scholar 

  31. Schafferhans J, Baumann A, Wagenpfahl A, Deibel C, Dyakonov V. Org Electron, 2010, 11: 3597–3602

    Article  Google Scholar 

  32. Hamilton MC, Martin S, Kanicki J. IEEE T Electron Dev, 2004, 51: 877–885

    Article  Google Scholar 

  33. Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, Heeger AJ. Adv Mater, 2006, 18: 572–576

    Google Scholar 

  34. Li L, Lee PS, Yan C, Zhai T, Fang X, Liao M, Koide Y, Bando Y, Golberg D. Adv Mater, 2010, 22: 5145–5149

    Google Scholar 

  35. Campoy-Quiles M, Kanai Y, El-Basaty A, Sakai H, Murata H. Org Electron, 2009, 10: 1120–1132

    Article  Google Scholar 

  36. van Bavel SS, Bärenklau M, de With G, Hoppe H, Loos J. Adv Funct Mater, 2010, 20: 1458–1463

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Z., Zhou, Q., Mao, P. et al. All-solution-processed PIN architecture for ultra-sensitive and ultra-flexible organic thin film photodetectors. Sci. China Chem. 59, 1258–1263 (2016). https://doi.org/10.1007/s11426-016-0080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0080-6

Keywords

Navigation