Skip to main content
Log in

Uranyl oxamate hydrates: hydrothermal synthesis, crystal structure, photophysical properties, and selective crystallization

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Presented here are two isostructural uranyl coordination polymers [UO2(EDO)(H2O)]·H2O (1) and [UO2(BDO)(H2O)]·2H2O (2) (EDO2-=ethylene-1,2-dioxamate; BDO2-=butylene-1,2-dioxamate) with identical stepwise zigzag chain structure and distinct interchain hydrogen bonding interaction, prepared from hydrothermal reaction of DEEDO or DEBDO (DEEDO=diethyl ethylene-1,2-dioxamate; DEBDO=diethyl butylene-1,2-dioxamate) with uranyl ions. The monomeric uranyl-based fluorescence emissions of compounds 1 and 2 are red-shifted by about 6 and 5 nm respectively, compared to that of uranyl nitrate hexahydrate. Compound 1 has stronger emission than compound 2, but both their emissions exhibit triple-exponential decay. The photophysics of uranyl oxalate trihydrate was also investigated for comparison. The selective crystallization of compound 1 in alkaline solution was applied to the sequestration of uranyl ions, showing a kinetic preference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang KX, Chen JS. Acc Chem Res, 2011, 44: 531–540

    Article  CAS  Google Scholar 

  2. Andrews MB, Cahill CL. Chem Rev, 2013, 113: 1121–1136

    Article  CAS  Google Scholar 

  3. Loiseau T, Mihalcea I, Henry N, Volkringer C. Coord Chem Rev, 2014, 266: 69–109

    Article  Google Scholar 

  4. Yanga W, Parkerb TG, Sun ZM. Coord Chem Rev, 2015, 303: 86–109

    Article  Google Scholar 

  5. Yudintsev SV, Stefanovsky SV, Ewing RC. Actinide host phases as radioactives waste forms. In: Krivovichev SV, Burns PC, Tananaev IG, Eds. Structural Chemistry of Inorganic Actinide Compounds. Amsterdam: Elsevier, 2007

    Google Scholar 

  6. Nash KL, Horwitz EP, Diamond H, Rickert PG, Muntean JV, Mendoza MD,Di Giuseppe G. Solvent Extr Ion Exch, 1996, 14: 13–33

    Article  CAS  Google Scholar 

  7. Morss LR, Nash KL, Ensor DD. J Chem Soc, Dalton Trans, 2000: 285–291

    Google Scholar 

  8. Fourmigué M, Batail P. Chem Rev, 2004, 104: 5379–5418

    Article  Google Scholar 

  9. Chernyshev AN, Morozov D, Mutanen J, Kukushkin VY, Groenhof G, Haukka M. J Mater Chem C, 2014, 2: 8285–8294

    Article  CAS  Google Scholar 

  10. Denning RG. J Phys Chem A, 2007, 111: 4125–4143

    Article  CAS  Google Scholar 

  11. Natrajan LS. Coord Chem Rev, 2012, 256: 1583–1603

    Article  CAS  Google Scholar 

  12. Zheng YZ, Tong ML, Chen XM. Eur J Inorg Chem, 2005: 4109–4117

    Google Scholar 

  13. Borkowski LA, Cahill CL. Cryst Growth Des, 2006, 6: 2248–2259

    Article  CAS  Google Scholar 

  14. Grancha T, Ferrando-Soria J, Castellano M, Julve M, Pasán J, Armentano D, Pardo E. Chem Commun, 2014, 50: 7569–7585

    Article  CAS  Google Scholar 

  15. Staritzky E, Cromer DT. Anal Chem, 1956, 28: 1353–1354

    Article  CAS  Google Scholar 

  16. Jayadevan NC, Chackraburtty DM. Acta Cryst Sec B, 1972, 28: 3178–3182

    Article  CAS  Google Scholar 

  17. Alcock NW. J Chem Soc Dalton Trans, 1973: 1610–1613

    Google Scholar 

  18. Jayadevan NC, Mudher KDS, Chackraburtty DM. Acta Cryst Sec B, 1975, 31: 2277–2280

    Article  Google Scholar 

  19. Szabo Z, Fischer A. Acta Cryst Sec E, 2002, 58: i56–i58

    Article  CAS  Google Scholar 

  20. Tokunaga TK, Kim Y, Wan J. Environ Sci Technol, 2009, 43: 5467–5471

    Article  CAS  Google Scholar 

  21. Tokunaga TK, Kim Y, Wan J, Yang L. Environ Sci Technol, 2012, 46: 7471–7477

    Article  CAS  Google Scholar 

  22. Shu YB, Xu C, Liu WS. Eur J Inorg Chem, 2013: 3592–3595

    Google Scholar 

  23. Shu YB, Ju ZH, Zhang HR, Liu WS. Sci China Chem, 2015, 58: 845–849

    Article  CAS  Google Scholar 

  24. Riisiö A, Väisänen A, Sillanpää R. Inorg Chem, 2013, 52: 8591–8600

    Article  Google Scholar 

  25. Rao L, Garnov AY, Jiang J, Di Bernardo P, Zanonato P, Bismondo A. Inorg Chem, 2003, 42: 3685–3692

    Article  CAS  Google Scholar 

  26. Di Bernardo P, Zanonato P, Bismondo A, Jiang H, Garnov AY, Jiang J, Rao L. Eur J Inorg Chem, 2006, 4533–4540

    Google Scholar 

  27. Vujicic NŠ, Glasovac Z, Zweep N, van Esch JH, Vinkovic M, Popovic J, Žinic M. Chem Eur J, 2013, 19: 8558–8572

    Article  CAS  Google Scholar 

  28. Borkowski LA, Cahill CL. Cryst Growth Des, 2006, 6: 2241–2247

    Article  CAS  Google Scholar 

  29. Brachmann A, Geipel G, Bernhard G, Nitsche H. Radiochim Acta, 2002, 90: 147–153

    Article  CAS  Google Scholar 

  30. Li Y, Su J, Mitchell E, Zhang GQ, Li J. Sci China Chem, 2013, 56: 1671–1681

    Article  CAS  Google Scholar 

  31. Tsushima S, Götz C, Fahmy K. Chem Eur J, 2010, 16: 8029–8033

    Article  CAS  Google Scholar 

  32. Liu G, Deifel NP, Cahill CL, Zhurov VV, Pinkerton AA. J Phys Chem A, 2012, 116: 855–864

    Article  CAS  Google Scholar 

  33. Zhang JP, Huang XC, Chen XM. Chem Soc Rev, 2009, 38: 2385–2396

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weisheng Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, Y., Liu, W. Uranyl oxamate hydrates: hydrothermal synthesis, crystal structure, photophysical properties, and selective crystallization. Sci. China Chem. 59, 740–745 (2016). https://doi.org/10.1007/s11426-015-5550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5550-3

Keywords

Navigation