Skip to main content
Log in

Reductive immobilization of Re(VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 27 November 2019

This article has been updated

Abstract

Technetium-99 (99Tc), largely produced by nuclear fission of 235U or 239Pu, is a component of radioactive waste. This study focused on a remediation strategy for the reduction of pertechnetate (TcO -4 ) by studying its chemical analogue rhenium (Re(VII)) to avoid the complication of directly working with radioactive elements. Nanoscale zero-valent iron particles supported on graphene (NZVI/rGOs) from GOs-bound Fe ions were prepared by using a H2/Ar plasma technique and were applied in the reductive immobilization of perrhenate (ReO -4 ). The experimental results demonstrated that NZVI/rGOs could efficiently remove Re from the aqueous solution, with enhanced reactivity, improved kinetics (50 min to reach equilibrium) and excellent removal capacity (85.77 mg/g). The results of X-ray photoelectron spectroscopy analysis showed that the mechanisms of Re immobilization by NZVI/rGOs included adsorption and reduction, which are significant to the prediction and estimation of the effectiveness of reductive TcO -4 by NZVI/rGOs in the natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 27 November 2019

    We regret that our article ���Reductive immobilization of Re(VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique��� (Sci. China Chem., 2016, 59: 150���158) [1] contained errors. The corrections in an erratum do not change or affect the result or conclusion of the paper.

  • 27 November 2019

    We regret that our article ���Reductive immobilization of Re(VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique��� (Sci. China Chem., 2016, 59: 150���158) [1] contained errors. The corrections in an erratum do not change or affect the result or conclusion of the paper.

References

  1. Fan DM, Anitori RP, Tebo BM, Tratnyek PG. Environ Sci Technol, 2013, 47: 5302–5310

    Article  CAS  Google Scholar 

  2. Fan DM, Anitori RP, Tebo BM, Tratnyek PG. Environ Sci Technol, 2014, 48: 7409–7417

    Article  CAS  Google Scholar 

  3. Benjamin PB, Ivana R, McGregor D, Mbomekalle IM, Lukens WW, Lynn CF. J Am Chem Soc, 2011, 133: 18802–18815

    Article  CAS  Google Scholar 

  4. Darab JG, Smith PA. Chem Mater, 1996, 8: 1004–1021

    Article  CAS  Google Scholar 

  5. Kim E, Boulegue J. Radiochim Acta, 2003, 91: 1–6

    Article  CAS  Google Scholar 

  6. Mashkani SG,Ghazvini PTM, Aligol DA. Bioresource Technol, 2009, 100: 603–608

    Article  CAS  Google Scholar 

  7. Xiong Y, Xu J, Shan WJ, Lou ZN, Fang DW, Zang SL, Han GX. Bioresource Technol, 2013, 127: 464–472

    Article  CAS  Google Scholar 

  8. Kim E, Benedetti MF, Boulegue J. Water Res, 2004, 38: 448–454

    Article  CAS  Google Scholar 

  9. Wan J, Klein J, Simon S, Joulian C, Dictor MC, Deluchat V, Dagot C. Water Res, 2010, 44: 5098–5108

    Article  CAS  Google Scholar 

  10. Kanel SR, Manning B, Charlet L, Choi H. Environ Sci Technol, 2005, 39: 1291–1298

    Article  CAS  Google Scholar 

  11. Wilkin RT, Su C, Ford RG, Paul CJ. Environ Sci Technol, 2005, 39: 4599–4605

    Article  CAS  Google Scholar 

  12. Liang LP, Guan XH, Shi Z, Li JL, Wu YN, Tratnyek PG. Environ Sci Technol, 2014, 48: 6326–6334

    Article  CAS  Google Scholar 

  13. Wang Y, Fang ZQ, Kang Y, Tsang EP. J Hazard Mater, 2014, 275: 230–237

    Article  CAS  Google Scholar 

  14. Liang LP, Yang WJ, Guan XH, Li JL, Xu ZJ, Wu J, Huang YY, Zhang XZ. Water Res, 2013, 47: 5846–5855

    Article  CAS  Google Scholar 

  15. Wang Y, Fang ZQ, Liang B, Tsang EP. Chem Eng J, 2014, 247: 283–290

    Article  CAS  Google Scholar 

  16. Joo SH, Feitz AJ, Sedlak DL, Waite TD. Environ Sci Technol, 2005, 39: 1263–1268

    Article  CAS  Google Scholar 

  17. Yang GC, Lee HL. Water Res, 2005, 39: 884–894

    Article  CAS  Google Scholar 

  18. Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV. Environ Sci Technol, 2006, 41: 284–290

    Article  CAS  Google Scholar 

  19. Chandra V, Park J, Chun YJ, Lee W, Hwang IC, Kim KS. ACS Nano, 2010, 4: 3979–3986

    Article  CAS  Google Scholar 

  20. Jabeen H, Chandra V, Jung SJ, Lee W, Kim KS, Kim SB. Nanoscale, 2011, 3: 3583–3585

    Article  CAS  Google Scholar 

  21. Wu QY, Lan JH, Wang CZ, Zhao YL, Chai ZF, Shi WQ. J Phys Chem A, 2014, 118: 10273–10280

    Article  CAS  Google Scholar 

  22. Wu QY, Lan JH, Wang CZ, Xiao CL, Zhao YL, Wei YZ, Chai ZF, Shi WQ. J Phys Chem A, 2014, 118: 2149–2158

    Article  CAS  Google Scholar 

  23. Li ZJ, Chen F, Yuan LY, Zhao YL, Chai ZF, Shi WQ. Chem Eng J, 2012, 210: 539–546

    Article  CAS  Google Scholar 

  24. Zhao GX, Jiang L, He YD, Li JX, Dong HL, Wang XK, Hu WP. Adv Mater, 2011, 23: 3959–3963

    Article  CAS  Google Scholar 

  25. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM. ACS Nano, 2010, 4: 4806–4814

    Article  CAS  Google Scholar 

  26. Hoch LB, Mack EJ, Hydutsky BW, Hershman JM, Skluzacek JM, Mallouk TE. Environ Sci Technol, 2008, 42: 2600–2605

    Article  CAS  Google Scholar 

  27. Singh G, Sutar DS, Botcha VD, Narayanam PK, Talwar SS, Srinivasa RS, Major SS. Nanotechnology, 2013, 24: 355704–355715

    Article  CAS  Google Scholar 

  28. Dou XM, Li R, Zhao B, Liang WY. J Hazard Mater, 2010, 182: 108–114

    Article  CAS  Google Scholar 

  29. Liger E, Charlet L, Van CP. Geochim Cosmochim Acta, 1999, 63: 2939–2955

    Article  CAS  Google Scholar 

  30. Ho YS. Water Res, 2006, 40: 119–125

    Article  CAS  Google Scholar 

  31. Bishop ME, Dong HL, Kukkadapu RK, Liu CX, Edelmann RE. Geochim Cosmochim Acta, 2011, 75: 5229–5246

    Article  CAS  Google Scholar 

  32. Peretyazhko TS, Zachara JM, Kukkadapu RK, Heald SM, Kutnyakov IV, Resch CT, Arey BW, Wang CM, Kovarik L, Phillips JL, Moore DA. Geochim Cosmochim Acta, 2012, 92: 48–66

    Article  CAS  Google Scholar 

  33. Lee JH, Zachara JM, Fredrickson JK, Heald SM, McKinley JP, Plymale AE, Resch CT, Moore DA. Geochim Cosmochim Acta, 2014, 136: 247–264

    Article  CAS  Google Scholar 

  34. Lv XS, Jiang GM, Xu XH. Chemosphere, 2011, 85: 1204–1209

    Article  CAS  Google Scholar 

  35. Peretyazhko T, Zachara JM, Heald SM, Jeon BH, Kukkadapu RK, Liu C, Moore D, Resch CT. Geochim Cosmochim Acta, 2008, 72: 1521–1539

    Article  CAS  Google Scholar 

  36. Yan S, Hua B, Bao ZY, Yang J, Liu CX, Deng BL. Environ Sci Technol, 2010, 44: 7783–7789

    Article  CAS  Google Scholar 

  37. Zhang L, Jiang XQ, Xu TC, Yang LJ, Zhang YY, Jin HJ. Ind Eng Chem Res, 2012, 51: 5577–5584

    Article  CAS  Google Scholar 

  38. Xiong Y, Chen CB, Gu XJ, Biswas BK, Shan WJ. Bioresource Technol, 2011, 102: 6857–6862

    Article  CAS  Google Scholar 

  39. Shan WJ, Fang DW, Zhao ZY, Yue S, Lou ZN, Xing ZQ, Xiong Y. Biomass Bioenerg, 2012, 37: 289–297

    Article  CAS  Google Scholar 

  40. Choe JK, Shapley JR, Strathmann TJ, Werth CJ. Environ Sci Technol, 2010, 44: 4716–4721

    Article  CAS  Google Scholar 

  41. Pacer RA. J Inorg Nucl Chem, 1973, 35: 1375–1377

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changlun Chen or Xiangke Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, C., Zhang, R. et al. Reductive immobilization of Re(VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique. Sci. China Chem. 59, 150–158 (2016). https://doi.org/10.1007/s11426-015-5452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5452-4

Keywords

Navigation