Skip to main content
Log in

Some interesting properties of black hydrogen-treated TiO2 nanowires and their potential application in solar energy conversion

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hydrogen treatment has been proposed as a simple and effective strategy to enhance the performance of TiO2 nanostructures for applications such as photocatalysis and photoelectrochemical (PEC) water splitting. While some studies have suggested that the black color can be ascribed to surface disorder, other reports have suggested that it is caused by the “oxygen vacancy” states associated with Ti3+ within the bandgap of the TiO2. The chemical nature and potential use of the bandgap states responsible for the black color of increased visible absorption is not yet well understood and subject of strong interest. Here we briefly review current understanding of the possible mechanisms behind the black color of hydrogen-treated TiO2 nanowires and its relevance to photocatalysis and solar water splitting for hydrogen generation. One important conclusion to date is that while hydrogen treatment enhances photocurrent of TiO2 with UV excitation, no noticeable photocurrent can be detected with visible light, which seems to be due to the very short lifetimes of the bandgap oxygen vacancy states arising from hydrogen treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38

    Article  CAS  Google Scholar 

  2. Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev, 1995, 95: 735–758

    Article  CAS  Google Scholar 

  3. Bak T, Nowotny J, Rekas M, Sorrell CC. Photoelectrochemical properties of the TiO2-Pt system in aqueous solutions. Int J Hydrogen Energy, 2002, 27: 19–26

    Article  CAS  Google Scholar 

  4. Biswas S, Hossain MF, Takahashi T. Fabrication of gratzel solar cell with TiO2/CdS bilayer photoelectrode. Thin Solid Films, 2008, 517: 1284–1288

    Article  CAS  Google Scholar 

  5. Liu B, Aydil ES. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc, 2009, 131: 3985–3990

    Article  CAS  Google Scholar 

  6. Lin YJ, Zhou S, Liu XH, Sheehan S, Wang DW. TiO2/TiSi2 heterostructures for high-efficiency photoelectrochemical H2O splitting. J Am Chem Soc, 2009, 131: 2772–2773

    Article  CAS  Google Scholar 

  7. Fitzmorris RC, Larsen G, Wheeler DA, Zhao Y, Zhang JZ. Ultrafast charge transfer dynamics in polycrystalline CdSe/TiO2 nanorods prepared by oblique angle Co-deposition. J Phys Chem C, 2012, 116: 5033–5041

    Article  CAS  Google Scholar 

  8. Baker DR, Kamat PV. Disassembly, reassembly, and photoelectrochemistry of etched TiO2 nanotubes. J Phys Chem C, 2009, 113: 17967–17972

    Article  CAS  Google Scholar 

  9. Hensel J, Wang GM, Li Y, Zhang JZ. Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett, 2010, 10: 478–483

    Article  CAS  Google Scholar 

  10. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293: 269–271

    Article  CAS  Google Scholar 

  11. Liu G, Wang X, Wang L, Chen Z, Li F, Lu GQ, Cheng HM. Drastically enhanced photocatalytic activity in nitrogen doped mesoporous TiO2 with abundant surface states. J Colloid Interf Sci, 2009, 334: 171–175

    Article  CAS  Google Scholar 

  12. Li Y, Zhang JZ. Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev, 2011, 4: 517–528

    Article  Google Scholar 

  13. Doan NM, Estrellan CR, Purnomo A, Gallardo S, Salim C, Hinode H. Characterization and photocatalytic activity of nano-TiO2 doped with iron and niobium for turquoise blue dye removal. Asean J Chem Eng, 2012, 1: 34–41

    Google Scholar 

  14. Ye GX, Wu B, Chen T, Zhang LK, Wang M, Chen L, Liu HL, Huang CR, Li JL. Crystal, electronic and magnetic structure of Co and Ag doped rutile TiO2 from first-principles calculations. Adv Mater Res, 2012, 399: 1789–1792

    Google Scholar 

  15. Zhong M, Shi J, Xiong F, Zhang W, Li C. Enhancement of photo-electrochemical activity of nanocrystalline CdS photoanode by surface modification with TiO2 for hydrogen production and electricity generation. Sol Energy, 2012, 86: 756–763

    Article  CAS  Google Scholar 

  16. Chen X, Liu L, Yu PY, Mao SS. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331: 746–750

    Article  CAS  Google Scholar 

  17. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y. Hydrogen-treated TiO2 nanowire arrays for photo-electrochemical water splitting. Nano Lett, 2011, 11: 3026–3033

    Article  CAS  Google Scholar 

  18. Wheeler DA, Wang G, Fitzmorris RC, Adams SA, Li Y, Zhang JZ. Ultrafast charge carrier dynamics and photoelectrochemical properties of hydrogen-treated TiO2 nanowire arrays. MRS Proc, 2012, 1387: e04–e07

    Article  Google Scholar 

  19. Chen XB, Liu L, Liu Z, Marcus MA, Wang WC, Oyler NA, Grass ME, Mao BH, Glans PA, Yu PY, Guo JH, Mao SS, Chen XB. Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci Rep, 2013, 3: 1–7

    Google Scholar 

  20. Wheeler DA, Ling YC, Dillon RJ, Fitzmorris RC, Dudzik CG, Zavodivker L, Rajh T, Dimitrijevic NM, Millhauser G, Bardeen C, Li Y, Zhang JZ. Probing the nature of bandgap states in hydrogen-treated TiO2 nanowires. J Phys Chem, 2013, 117: 26821–26830

    CAS  Google Scholar 

  21. Li Y, Zhang JZ. Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev, 2010, 4: 517–528

    Article  CAS  Google Scholar 

  22. Cronemeyer DC. Infrared absorption of reduced rutile TiO2 single crystals. Phys Rev, 1959, 113: 1222–1226

    Article  CAS  Google Scholar 

  23. Cronemeyer DC, Gilleo MA. The optical absorption and photoconductivity of rutile. Phys Rev, 1951, 82: 975–976

    Article  CAS  Google Scholar 

  24. Kim WT, Kim CD, Choi QW. Sub-band-gap photoresponse of TiO2−x thin-film-electrolyte interface. Phys Rev B, 1984, 30: 3625–3628

    Article  CAS  Google Scholar 

  25. Mao SS, Shen SH, Guo LJ. Nanomaterials for renewable hydrogen production, storage and utilization. Prog Nat Sci: Mater Int, 2012, 22: 522–534

    Article  Google Scholar 

  26. Kim HS, Kang SH. Effect of hydrogen treatment on anatase TiO2 nanotube arrays for photoelectrochemical water splitting. Bull Korean Chem Soc, 2013, 34: 2067–2072

    Article  CAS  Google Scholar 

  27. Cooper JK, Ling Y, Longo C, Li Y, Zhang JZ. Effects of hydrogen treatment and air annealing on ultrafast charge carrier dynamics in ZnO nanowires under in situ photoelectrochemical conditions. J Phys Chem C, 2012, 116: 17360–17368

    Article  CAS  Google Scholar 

  28. Wang G, Ling Y, Wang H, Yang X, Wang C, Zhang JZ, Li Y. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ Sci, 2012, 5: 6180–6187

    Article  CAS  Google Scholar 

  29. Wang G, Ling Y, Lu X, Qian F, Tong X, Zhang JZ, Lordi V, Leao CR, Li Y. Computational and photoelectrochemical study of hydrogenated bismuth vanadate, J Phys Chem C, 2013, 117: 10957–10964

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Yu or Jinzhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Zhang, J. Some interesting properties of black hydrogen-treated TiO2 nanowires and their potential application in solar energy conversion. Sci. China Chem. 58, 1810–1815 (2015). https://doi.org/10.1007/s11426-015-5400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5400-3

Keywords

Navigation