Skip to main content
Log in

Probing the interaction at nano-bio interface using synchrotron radiation-based analytical techniques

  • Reviews
  • Special Topic Analytical Sciences at the Nano-Bio Interface
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Understanding the interactions of nanomaterials (NMs) with biomolecules, organelles, cells, and organic tissues at the nano-bio interface can offer important information for their uptake, distribution, translocation, metabolism and degradation in vitro and in vivo, which can help to precisely tune and design “smart” NMs for biomedical applications. However, probing the interactions at the nano-bio interface, which generally requires dedicated analytical methods and tools, is remarkably complicated due to the dynamically changed nature of the nano-bio interface. Because of the advantages of high spatial resolution, high sensitivity, excellent accuracy, low matrix effects and non-destructiveness, synchrotron radiation (SR)-based analytical techniques have become extremely valuable tools. Herein, we present a comprehensive overview of SR-based techniques for the visualized study of NMs at cellular and subcellular interfaces and their transformation in vitro; the exploration of biodistribution, translocation, metabolism and degradation of NMs in vivo; and clarification of the molecular mechanisms of NMs’ reactions with biomolecules. Rapid development of advanced light source means that in situ, real-time analysis of NMs at the nano-bio interface will be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He X, Ma YH, Li M, Zhang P, Li YY, Zhang ZY. Quantifying and imaging engineered nanomaterials in vivo: challenges and techniques. Small, 2013, 9: 1482–1491

    Article  CAS  Google Scholar 

  2. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater, 2009, 8: 543–557

    Article  CAS  Google Scholar 

  3. Docter D, Distler U, Storck W, Kuharev J, Wünsch D, Hahlbrock A, Knauer SK, Tenzer S, Stauber RH. Quantitative profiling of the protein coronas that form around nanoparticles. Nat Protoc, 2014, 9: 2030–2044

    Article  CAS  Google Scholar 

  4. Fleischer CC, Payne CK. Cellular binding of charged nanoparticleprotein complexes. Biophys J, 2014, 106: 623A–624A

    Article  Google Scholar 

  5. Lynch I, Salvati A, Dawson KA. Protein-nanoparticle interactions: what does the cell see. Nat Nanotechnol, 2009, 4: 546–547

    Article  CAS  Google Scholar 

  6. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer SK, Stauber RH. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol, 2013, 8: 772–781

    Article  CAS  Google Scholar 

  7. Dobrovolskaia MA, Neun BW, Man S, Ye XY, Hansen M, Patri AK, Crist RM, McNeil SE. Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles. Nanomed-Nanotechnol Biol Med, 2014, 10: 1453–1463

    Article  CAS  Google Scholar 

  8. Wang B, Feng WY, Zhao YL, Chai ZF. Metallomics insights for in vivo studies of metal based nanomaterials. Metallomics, 2013, 5: 793–803

    Article  CAS  Google Scholar 

  9. Pozzi D, Caracciolo G, Capriotti AL, Cavaliere C, Piovesana S, Colapicchioni V, Palchetti S, Riccioli A, Laganà A. A proteomicsbased methodology to investigate the protein corona effect for targeted drug delivery. Mol Biosyst, 2014, 10: 2815–2819

    Article  CAS  Google Scholar 

  10. Shannahan JH, Podila R, Aldossari AA, Emerson H, Powell BA, Ke PC, Rao AM, Brown JM. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors. Toxicol Sci, 2014, 10: 1–11

    Google Scholar 

  11. Ge CC, Du JF, Zhao LN, Wang LM, Liu Y, Li DH, Yang YL, Zhou RH, Zhao YL, Chai ZF, Chen CY. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA, 2011, 108: 16968–16973

    Article  CAS  Google Scholar 

  12. Chen CY, Li YF, Qu Y, Chai ZF, Zhao YL. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. Chem Soc Rev, 2013, 42: 8266–8303

    Article  CAS  Google Scholar 

  13. Wang B, Yin JJ, Zhou XY, Kurash I, Chai ZF, Zhao YL, Feng WY. Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicroenvironment: catalytic activities mediated by surface chemical states. J Phys Chem C, 2013, 117: 383–392

    Article  CAS  Google Scholar 

  14. Lai ZW, Yan Y, Caruso F, Nice EC. Emerging techniques in proteomics for probing nanobio interactions. ACS Nano, 2012, 6: 10438–10448

    Article  CAS  Google Scholar 

  15. Bhaumik A, Shearin AM, Delong R, Wanekaya A, Ghosh K. Probing the interaction at the nano-bio interface using Raman spectroscopy: ZnO nanoparticles and adenosine triphosphate biomolecules. J Phys Chem C-Nanomater Interfaces, 2014, 118: 18631–18639

    Article  CAS  Google Scholar 

  16. Jin SE, Jin WB, Hong S. Multi-scale observation of biological interactions of nanocarriers: from nano to macro. Microsc Res Tech, 2010, 73: 813–823

    Article  CAS  Google Scholar 

  17. Zhang XX, Han XF, Wu FG, Jasensky J, Chen Z. Nano-bio interfaces probed by advanced optical spectroscopy: from model system studies to optical biosensors. Chin Sci Bull, 2013, 58: 2537–2556

    Article  CAS  Google Scholar 

  18. Li W, Liu R, Wang YL, Zhao YL, Gao XY. Temporal techniques: dynamic tracking of nanomaterials in live cells. Small, 2013, 9: 1585–1594

    Article  CAS  Google Scholar 

  19. Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol, 2009, 4: 577–580

    Article  Google Scholar 

  20. Mahmoudi M, Lohse SE, Murphy CJ, Fathizadeh A, Montazeri A, Suslick KS. Variation of protein corona composition of gold nanoparticles following plasmonic heating. Nano Lett, 2014, 14: 6–12

    Article  CAS  Google Scholar 

  21. Liu W, Rose J, Plantevin S, Auffan M, Bottero JY, Vidaud C. Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona. Nanoscale, 2013, 5: 1658–1668

    Article  CAS  Google Scholar 

  22. Havrdova M, Polakova K, Skopalik J, Vujtek M, Mokdad A, Homolkova M, Tucek J, Nebesarova J, Zboril R. Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells. Micron, 2014, 67: 149–154

    Article  CAS  Google Scholar 

  23. Twining BS, Baines SB, Fisher NS, Maser J, Vogt S, Jacobsen C, Tovar-Sanchez A, Sañudo-Wilhelmy SA. Quantifying trace elements in individual aquatic protist cells with a synchrotron X-ray fluorescence microprobe. Anal Chem, 2003, 75: 3806–3816

    Article  CAS  Google Scholar 

  24. Mcrae R, Bagchi P, Sumalekshmy S, Fahrni CJ. In situ imaging of metals in cells and tissues. Chem Rev, 2009, 109: 4780–4827

    Article  CAS  Google Scholar 

  25. Kosior E, Bohic S, Suhonen H, Cloetens P. Absolute zinc quantification at the sub-cellular level by combined use of hard X-ray fluorescence and phase contrast imaging techniques. J Phys Conf, 2013, 463: 12–21

    Article  Google Scholar 

  26. Hummer AA, Rompel A. The use of X-ray absorption and synchrotron based micro-X-ray fluorescence spectroscopy to investigate anticancer metal compounds in vivo and in vitro. Metallomics, 2013, 5: 597–614

    Article  CAS  Google Scholar 

  27. Barberie SR, Iceman CR, Cahill CF, Cahill TM. Evaluation of different synchrotron beamline configurations for X-ray fluorescenceanalysis of environmental samples. Anal Chem, 2014, 86: 8253–8260

    Article  CAS  Google Scholar 

  28. Lewis DJ, Bruce C, Bohic S, Cloetens P, Hammond SP, Arbon D, Blair-Reid S, Pikramenou Z, Kysela B. Intracellular synchrotron nanoimaging and DNA damage/genotoxicity screening of novel lanthanide-coated nanovectors. Nanomedicine, 2010, 5: 1547–1557

    Article  CAS  Google Scholar 

  29. Snigireva I, Snigirev A. X-Ray microanalytical techniques based on synchrotron radiation. J Environ Monit, 2006, 8: 33–42

    Article  CAS  Google Scholar 

  30. Lewis DJ, Bruce C, Bohic S, Cloetens P, Hammond SP, Arbon D, Blair-Reid S, Pikramenou Z, Kysela B. Intracellular synchrotron nanoimaging and DNA damage/genotoxicity screening of novel lanthanide-coated nanovectors. Nanomedicine, 2010, 5: 1547–1557

    Article  CAS  Google Scholar 

  31. Pascolo L, Bortot B, Severini GM. Detection of PLGA-based nanoparticles at a single-cell level by synchrotron radiation FTIR spectromicroscopy and correlation with X-ray fluorescence microscopy. Int J Nanomed, 2014, 9: 2791–2801

    Google Scholar 

  32. Zhang JC, Cai XQ, Zhang Y, Li XM, Li WX, Tian YC, Li AG, Yu XH, Fan CH, Qing H. Imaging cellular uptake and intracellular distribution of TiO2 nanoparticles. Anal Methods, 2013, 5: 6611–6616

    Article  CAS  Google Scholar 

  33. Bussy C, Cambedouzou J, Lanone S, Leccia E, Heresanu V, Pinault M, Mayne-L’hermite M, Brun N, Mory C, Cotte M, Doucet J, Boczkowski J, Launois P. Carbon nanotubes in macrophages: imaging and chemical analysis by X-ray fluorescence microscopy. Nano Lett, 2008, 8: 2659–2663

    Article  CAS  Google Scholar 

  34. Bussy C, Paineau E, Cambedouzou J, Brun N, Mory C, Fayard B, Salomé M, Pinault M, Huard M, Belade E, Armand L, Boczkowski J, Launois P, Lanone S. Intracellular fate of carbon nanotubes inside murine macrophages: pH-dependent detachment of iron catalyst nanoparticles. Part Fibre Toxicol, 2013, 10: 10–24

    Article  Google Scholar 

  35. Cai XQ, Chen HH, Wang CL, Chen ST, Lai SF, Chien CC, Chen YY, Kempson IM, Hwu Y, Yang CS, Margaritondo G. Imaging the cellular uptake of tiopronin-modified gold nanoparticles. Anal Bioanal Chem, 2011, 401: 809–816

    Article  CAS  Google Scholar 

  36. Zhang XZ, Xu ZJ, Tai RZ, Zhen XJ, Wang Y, Guo Z, Yan R, Chang R, Wang B, Li M, Zhao J, Gao F. Ratiocontrast imaging of dualenergy absorption for element mapping with a scanning transmission X-ray microscope. J Synchrotron Radiat, 2010, 17: 804–809

    Article  CAS  Google Scholar 

  37. Chen N, He Y, Su YY, Li XM, Huang Q, Wang HF. The cytotoxicity of cadmium-based quantum dots. Biomaterials, 2012, 33: 1238–1244

    Article  CAS  Google Scholar 

  38. Zhang P, Ma YH, Zhang ZY, He X, Zhang J, Guo Z, Tai RZ, Zhao YL, Chai ZF. Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano, 2012, 6: 9943–9950

    Article  CAS  Google Scholar 

  39. Chen ZY, Liu Y, Sun BY, Li H, Dong JQ, Zhang LJ, Wang LM, Wang P, Zhao YL, Chen CY. Polyhydroxylated metallofullerenols stimulate IL-1ß secretion of macrophage through TLRs/MyD88/NF- ?B pathway and NLRP3 inflammasome activation. Small, 2014, 10: 2362–2372

    Article  CAS  Google Scholar 

  40. Wang Y, Wang B, Zhu MT, Li M, Wang HJ, Wang M, Ouyang H, Chai ZF, Feng WY, Zhao YL. Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure. Toxicol Lett, 2011, 205: 26–37

    Article  CAS  Google Scholar 

  41. Wang JX, Chen CY, Liu Y, Jiao F, Li W, Lao F. Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett, 2008, 183: 72–80

    Article  CAS  Google Scholar 

  42. Bai R, Zhang LL, Liu Y, Li B, Wang LM, Wang P, Autrup H, Beer C, Chen CY. Integrated analytical techniques with high sensitivity for studying brain translocation and potential impairment induced by intranasally instilled copper nanoparticles. Toxicol Lett, 2014, 226: 70–80

    Article  CAS  Google Scholar 

  43. Liu T, Kempson I, de Jonge M, Howard DL, Thierry B. Quantitative synchrotron X-ray fluorescence study of the penetration of transferrinconjugated gold nanoparticles inside model tumour tissues, Nanoscale, 2014, 6: 9774–9782

    Article  CAS  Google Scholar 

  44. Jackson BP, Pace HE, Lanzirotti A, Smith R, Ranville JF. Synchrotron X-ray 2D and 3D elemental imaging of CdSe/ZnS quantum dot nanoparticles in Daphnia magna. Anal Bioanal Chem, 2009, 394: 911–917

    Article  CAS  Google Scholar 

  45. Qu Y, Li W, Zhou YL, Liu XF, Zhang LL, Wang LM, Li YF, Lina A, Tang ZY, Zhao YL, Chai ZF, Chen CY. Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett, 2011, 11: 3174–3183

    Article  CAS  Google Scholar 

  46. Liu H, Wang B, Wang Z, Li M, Bi XL, Yu XH, Feng WY. Distribution of CdSe@ZnS QDs in adult Drosophila and their stage-1 larva. Nuclear Tech, 2011, 34: 415–418

    Google Scholar 

  47. Chen HQ, Wang B, Feng WY, Du W, Ouyang H, Chai ZF, Bi XL. Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence. Nanotoxicology, 2014, 25: 1–11

    Google Scholar 

  48. Brun E, Barreau F, Veronesi G, Fayard B, Sorieul S, Chanéac C, Carapito C, Rabilloud T, Mabondzo A, Herlin-Boime N, Carrière M. Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part Fibre Toxicol, 2014, 11: 1–13

    Article  Google Scholar 

  49. Brun E, Jugan ML, Herlin-Boime N, Jaillard D, Fayard B, Flank AM, Mabondzo A, Carriere M. Investigation of TiO2 nanoparticles translocation through a Caco-2 monolayer. J Phys Conf, 2011, 304: 12–48

    Article  Google Scholar 

  50. He X, Pan YY, Zhang JZ, Li YY, Ma YH, Zhang P, Ding YY, Zhang J, Wu ZQ, Zhao YL, Chai ZF, Zhang ZY. Quantifying the total ionic release from nanoparticles after particle-cell contact. Environ Pollut, 2015, 196: 194–200

    Article  CAS  Google Scholar 

  51. Ma YH, Zhang P, Zhang ZY, He X, Li YY, Zhang J, Zheng LR, Chu SQ, Yang K, Zhao YL, Chai ZF. Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology, 2014, 30: 1–9

    CAS  Google Scholar 

  52. Ma YH, He X, Zhang P, Zhang ZY, Guo Z, Tai RZ, Xu Z, Zhang L, Ding YY, Zhao YL, Chai ZF. Phytotoxicity and biotransformation of La2O3 nanoparticles in a 2 terrestrial plant cucumber (Cucumis sativus). Nanotoxicology, 2011, 5: 743–753

    Article  CAS  Google Scholar 

  53. Wang LM, Li YF, Zhou LJ, Liu Y, Li M, Zhang K, Wu XC, Zhang LL, Li B, Chen CY. Characterization of gold nanorods in vivo by integrated analytical techniques: their uptake, retention, and chemical forms. Anal Bioanal Chem, 2010, 396: 1105–1114

    Article  CAS  Google Scholar 

  54. Wang LM, Li JY, Pan J, Jiang XM, Ji YL, Li YF, Qu Y, Zhao YL, Wu XC, Chen CY. Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. J Am Chem Soc, 2013, 135: 17359–17368

    Article  CAS  Google Scholar 

  55. Zhong J, Song L, Meng J, Gao B, Chu WS, Xu HY, Luo Y, Guo JH, Marcelli A, Xie SH, Wu ZY. Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon, 2009, 47: 967–973

    Article  CAS  Google Scholar 

  56. Laera S, Ceccone G, Rossi F, Gilliland D, Hussain R, Siligardi G, Calzolai L. Measuring protein structure and stability of proteinnanoparticle systems with synchrotron radiation circular dichroism. Nano Lett, 2011, 11: 4480–4484

    Article  CAS  Google Scholar 

  57. Barends TR, Foucar L, Botha S, Doak RB, Shoeman RL, Nass K, Koglin JE, Williams GJ, Boutet S, Messerschmidt M, Schlichting I. De novo protein crystal structure determination from X-ray freeelectron laser data. Nature, 2014, 505: 244–247

    Article  CAS  Google Scholar 

  58. Kastritis PL, Rodrigues JPGLM, Folkers GE, Boelens R, Bonvin AMJJ. Proteins feel more than they see: fine-tuning of binding affinity by properties of the non-interacting surface. J Mol Biol, 2014, 426: 2632–2652

    Article  CAS  Google Scholar 

  59. Weinhausen B, Köster S. Microfluidic devices for X-ray studies on hydrated cells. Lab on a Chip, 2013, 13: 212–215

    Article  CAS  Google Scholar 

  60. Weinhausen B, Saldanha O, Wilke RN, Dammann C, Priebe M, Burghammer M, Sprung M, Köster S. Scanning X-ray nanodiffraction on living eukaryotic cells in microfluidic environments. Phys Rev Lett, 2014, 112: 102–107

    Article  Google Scholar 

  61. Jones MW, van Riessen GA, Abbey B, Putkunz CT, Junker MD, Balaur E, Vine DJ, McNulty I, Chen B, Arhatari BD, Frankland S, Nugent KA, Tilley L, Peele AG. Whole-cell phase contrast imaging at the nanoscale using fresnel coherent diffractive imaging tomography. Sci Rep, 2013, 3: 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyue Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Feng, W., Chai, Z. et al. Probing the interaction at nano-bio interface using synchrotron radiation-based analytical techniques. Sci. China Chem. 58, 768–779 (2015). https://doi.org/10.1007/s11426-015-5394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5394-x

Keywords

Navigation