Skip to main content
Log in

Intrinsic viscosity of polymer solutions: fresh ideas to an old problem

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Intrinsic viscosity is one of the most fundamental properties of dilute polymer solutions; its study forms an integral part of the cornerstone of the modern macromolecular theory. However, a general theory applicable to any chain architectures and solvent conditions has remained elusive, due to the formidable challenges in the theoretical treatment of the long-range, many-body and accumulative hydrodynamic effects. Recently, Lijia An and coworkers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, has developed a new approach that largely overcomes these challenges. Their new theory provides a simple and unified theoretical framework for describing the intrinsic viscosity of polymers with arbitrary architectures under any solvent conditions and forms the theoretical basis for inferring the polymer chain structure from intrinsic viscosity measurements. Comparisons with existing experimental data yield extensive, quantitative agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flory PJ. Principles of Polymer Chemistry. Ithaca, NY: Cornell University, 1953

    Google Scholar 

  2. Yamakawa H. Modern Theory of Polymer Solutions. New York: Harper and Row, 1971

    Google Scholar 

  3. Rubinstein M, Colby RH. Polymer Physics. Oxford: Oxford University, 2003

    Google Scholar 

  4. Doi M, Edwards SF. The Theory of Polymer Dynamics. Oxford: Clarendon, 1986

    Google Scholar 

  5. Flory PJ. Spatial configuration of macromolecular chains. Science, 1975, 188: 1268–1276

    Article  CAS  Google Scholar 

  6. Bloomfield VA. Hydrodynamic studies of structure of biological macromolecules. Science, 1968, 161: 1212–1219

    Article  CAS  Google Scholar 

  7. Lyulin AV, Davies GR, Adolf DB. Brownian dynamics simulation of dendrimers under shear flow. Macromolecules, 2000, 33: 3294–3304

    Article  CAS  Google Scholar 

  8. Fréchet JMJ, Tomalia DA. Dendrimers and Other Dendritic Polymers. New York: John Wiley & Sons, 2001

    Book  Google Scholar 

  9. Guan Z. Control of polymer topology through transition-metal catalysis: synthesis of hyperbranched polymers by cobalt-mediated free radical polymerization. J Am Chem Soc, 2002, 124: 5616–5617

    Article  CAS  Google Scholar 

  10. Hoai NT, Sasaki A, Sasaki M, Kaga H, Kakuchi T, Satoh T. Synthesis, characterization, and lectin recognition of hyperbranched polysaccharide obtained from 1,6-anhydro-D-hexofuranose. Biomacromolecules, 2011, 12: 1891–1899

    Article  CAS  Google Scholar 

  11. Lee J, Tripathi A. Intrinsic viscosity of polymers and biopolymers measured by microchip. Anal Chem, 2005, 77: 7137–7147

    Article  CAS  Google Scholar 

  12. Theillet F-X, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev, 2014, 114: 6661–6714

    Article  CAS  Google Scholar 

  13. de Gennes PG. Scaling Concepts in Polymer Physics. Ithaca, NY: Cornell University, 1979

    Google Scholar 

  14. Fetters LJ, Hadjichristidis N, Lindner JS, Mays JW. Molecular weight dependence of hydrodynamic and thermodynamic properties for well-defined linear polymers in solution. J Phys Chem Ref Data, 1994, 23: 619–640

    Article  CAS  Google Scholar 

  15. Berry GC. Thermodynamic and conformational properties of polystyrene. II. Intrinsic viscosity studies on dilute solutions of linear polystyrenes. J Chem Phys, 1966, 46: 1338–1352

    Article  Google Scholar 

  16. Li LW, Lu YY, An LJ, Wu C. Experimental and theoretical studies of scaling of sizes and intrinsic viscosity of hyperbranched chains in good solvents. J Chem Phys, 2013, 138: 114908

    Article  Google Scholar 

  17. Iatrou H, Willner L, Hadjichristidis N, Halperin A, Richter D. Aggregation phenomena of model PS/PI super-H-shaped block copolymers. Influence of the architecture. Macromolecules, 1996, 29: 581–591

    Article  CAS  Google Scholar 

  18. Lu YY, Shi TF, An LJ, Jin LP, Wang Z-G. A simple model for the anomalous intrinsic viscosity of dendrimers. Soft Matter, 2010, 6: 2619–2622

    Article  CAS  Google Scholar 

  19. Zimm BH, Stockmayer WH. The dimensions of chain molecules containing branches and rings. J Chem Phys, 1949, 17: 1301–1314

    Article  CAS  Google Scholar 

  20. Stockmayer WH, Fixman M. Dilute solutions of branched polymers. Ann NY Acad Sci, 1953, 57: 334–352

    Article  CAS  Google Scholar 

  21. Utracki LA, Roovers JEL. Viscosity and normal stresses of linear and star branched polystyrene solutions. I. Application of corresponding states principle to zero-shear viscosities. Macromolecules, 1973, 6: 366–372

    Article  CAS  Google Scholar 

  22. Burchard W. Use of rapid triple detection size exclusion chromatography to evaluate the evolution of molar mass and branching architecture during free radical branching. Adv Polym Sci, 1999, 143: 113–194

    Article  CAS  Google Scholar 

  23. Weissmüller M, Burchard W. Viscosity of fractions from end-linked polystyrene star macromolecules. Acta Polym, 1997, 48: 571–578

    Article  Google Scholar 

  24. Thurmond CD, Zimm BH. Size and shape of the molecules in artificially branched polystyrene. J Polym Sci, 1952, 8: 477–494

    Article  CAS  Google Scholar 

  25. Lu YY, An LJ, Wang Z-G. Intrinsic viscosity of polymers: general theory based on a partially permeable sphere model. Macromolecules, 2013, 46: 5731–5740

    Article  CAS  Google Scholar 

  26. Lu YY, Shi TF, An LJ, Wang Z-G. Intrinsic viscosity of polymers: from linear chains to dendrimers. Europhys Lett, 2012, 97: 64003

    Article  Google Scholar 

  27. Einstein A. Berichtigung zu meiner Arbeit: “Eine neue Bestimmung der Moleküldimensionen”. Ann Phys, 1911, 339: 591–592

    Article  Google Scholar 

  28. Debye P, Bueche AM. Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J Chem Phys, 1948, 16: 573–579

    Article  CAS  Google Scholar 

  29. Edwards SF, Muthukumar M. Brownian dynamics of polymer solutions. Macromolecules, 1984, 17: 586–596

    Article  CAS  Google Scholar 

  30. Krigbaum WR, Flory PJ. Molecular weight dependence of the intrinsic viscosity of polymer solutions. II. J Polym Sci, 1953, 11: 37–51

    Article  CAS  Google Scholar 

  31. Khasat N, Pennisi RW, Hadjichristidis N, Fetters LJ. Dilute solution behavior of 3-arm asymmetric and regular 3- and 12-arm polystyrene stars. Macromolecules, 1988, 21: 1100–1106

    Article  CAS  Google Scholar 

  32. Roovers J, Bywater S. Preparation of six-branched polystyrene. Thermodynamic and hydrodynamic porperties of four- and six-branched star polystyrenes. Macromolecules, 1974, 7: 443–449

    CAS  Google Scholar 

  33. Yang G, Jikei M, Kakimoto M. Synthesis and properties of hyperbranched aromatic polyamide. Macromolecules, 1999, 32: 2215–2220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyue Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, D. Intrinsic viscosity of polymer solutions: fresh ideas to an old problem. Sci. China Chem. 58, 835–838 (2015). https://doi.org/10.1007/s11426-015-5388-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5388-8

Keywords

Navigation