Skip to main content
Log in

Oxygen as an oxidant in palladium/copper-cocatalyzed oxidative C-H/C-H cross-coupling between two heteroarenes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The palladium/copper-cocatalyzed oxidative C-H/C-H cross-coupling between two heteroarenes by using molecular oxygen as an oxidant instead of metal oxidants has been developed for the first time to construct biheteroaryl motifs. A relatively broad range of thiophenes, furans and indoles can smoothly couple with various N-heteroarenes in satisfactory yields. This catalytic system with O2 as the terminal oxidant offers clear advantages of economically feasible and eco-friendly processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies JR, Kane PD, Moody CJ, Slawin AMZ. Control of competing N–H insertion and Wolff rearrangement in dirhodium(II)- catalyzed reactions of 3-indolyl diazoketoesters. synthesis of a potential precursor to the marine 5-(3-indolyl)oxazole martefragin A. J Org Chem, 2005, 70: 5840–5851

    Article  CAS  Google Scholar 

  2. Shengule SR, Karuso P. Concise total synthesis of the marine natural product ageladine A. Org Lett, 2006, 8: 4083–4084

    Article  CAS  Google Scholar 

  3. Hughes RA, Moody CJ. From amino acids to heteroaromatics—thiopeptide antibiotics, nature’s heterocyclic peptides. Angew Chem Int Ed, 2007, 46: 7930–7954

    Article  CAS  Google Scholar 

  4. Dumas A, Luedtke NW. Cation-mediated energy transfer in G-quadruplexes revealed by an internal fluorescent probe. J Am Chem Soc, 2010, 132: 18004–18007

    Article  CAS  Google Scholar 

  5. Li Y, Zhao M, Parkin KL. β-Carboline derivatives and diphenols from soy sauce are in vitroquinone reductase (QR) inducers. J Agric Food Chem, 2011, 59: 2332–2340

    Article  CAS  Google Scholar 

  6. Trincavelli ML, Giacomelli C, Daniele S, Taliani S, Cosimelli B, Laneri S, Severi E, Barresi E, Pugliesi I, Greco G, Novellino E, Settimo FD, Martini C. Allosteric modulators of human A2B adenosine receptor. Biochim Biophys Acta, 2014, 1840: 1194–1203

    Article  CAS  Google Scholar 

  7. For reviews and highlights in oxidative C–H/C–H cross-couplings between two heteroarenes, see

  8. Han W, Ofial AR. No detours: palladium-catalyzed oxidative C–H/C–H cross-couplings of heteroarenes. Synlett, 2011, 14: 1951–1955

    Google Scholar 

  9. Bugaut X, Glorius F. Palladium-catalyzed selective dehydrogenative cross-couplings of heteroarenes. Angew Chem Int Ed, 2011, 50: 7479–7481

    Article  CAS  Google Scholar 

  10. Cho SH, Kim JY, Kwak J, Chang S. Recent advances in the transition metalcatalyzed twofold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chem Soc Rev, 2011, 40: 5068–5083

    Article  CAS  Google Scholar 

  11. Yeung CS, Dong VM. Catalytic dehydrogenative cross-coupling: forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. Chem Rev, 2011, 111: 1215–1292

    Article  CAS  Google Scholar 

  12. Liu C, Zhang H, Shi W, Lei AW. Bond formations between two nucleophiles: transition metal catalyzed oxidative cross-coupling reactions. Chem Rev, 2011, 111: 1780–1824

    Article  CAS  Google Scholar 

  13. Zhao DB, You JS, Hu CW. Recent progress in coupling of two heteroarenes. Chem Eur J, 2011, 17: 5466–5492. For selected examples, see

    Article  CAS  Google Scholar 

  14. Gong X, Song GY, Zhang H, Li XW. Palladium- catalyzed oxidative cross-coupling between pyridine N-oxides and indoles. Org Lett, 2011, 13: 1766–1769

    Article  CAS  Google Scholar 

  15. Mandal D, Yamaguchi AD, Yamaguchi J, Itami K. Synthesis of dragmacidin D via direct C–H couplings. J Am Chem Soc, 2011, 133: 19660–19663

    Article  CAS  Google Scholar 

  16. Han W, Mayer P, Ofial AR. Palladium-catalyzed dehydrogenative cross-couplings of benzazoles with azoles. Angew Chem Int Ed, 2011, 50: 2178–2182

    Article  CAS  Google Scholar 

  17. Kuhl N, Hopkinson MN, Glorius F. Selective Rhodium (III)-catalyzed cross-dehydrogenative coupling of furan and thiophene derivatives. Angew Chem Int Ed, 2012, 51: 8230–8234

    Article  CAS  Google Scholar 

  18. He CY, Wang Z, Wu CZ, Qing FL, Zhang XG. Pd-catalyzed oxidative cross-coupling between two electron rich heteroarenes. Chem Sci, 2013, 4: 3508–3513

    Article  CAS  Google Scholar 

  19. Chen X, Hao XS, Goodhue CE, Yu JQ. Cu(II)-catalyzed functionalizations of aryl C–H bonds using O2 as an oxidant. J Am Chem Soc, 2006, 128: 6790–6791

    Article  CAS  Google Scholar 

  20. Yang SD, Sun CL, Fang Z, Li BJ, Li YZ, Shi ZJ. Palladium-catalyzed direct arylation of (hetero)arenes with aryl boronic acids. Angew Chem Int Ed, 2008, 47: 1473–1476

    Article  CAS  Google Scholar 

  21. Do HQ, Daugulis O. An aromatic glaser-hay reaction. J Am Chem Soc, 2009, 131: 17052–17053

    Article  CAS  Google Scholar 

  22. Urkalan KB, Sigman MS. Palladiumcatalyzed oxidative intermolecular difunctionalization of terminal alkenes with organostannanes and molecular oxygen. Angew Chem Int Ed, 2009, 48: 3146–3149

    Article  CAS  Google Scholar 

  23. Tang BX, Song RJ, Wu CY, Liu Y, Zhou MB, Wei WT, Deng GB, Yin DL, Li JH. Copper-catalyzed intramolecular C–H oxidation/acylation of formyl-N-arylformamides leading to indoline-2,3-diones. J Am Chem Soc, 2010, 132: 8900–8902

    Article  CAS  Google Scholar 

  24. Spiller GA. Caffeine. Boca Raton: CRC Press, 1998

    Google Scholar 

  25. Baraldi PG, Tabrizi MA, Preti D, Bovero A, Romagnoli R, Fruttarolo F, Zaid NA, Moorman AR, Varani K, Gessi S, Merighi S, Borea PA. Design, synthesis, and biological evaluation of new 8-heterocyclic xanthine derivatives as highly potent and selective human A2B adenosine receptor antagonists. J Med Chem, 2004, 47: 1434–1447

    Article  CAS  Google Scholar 

  26. Xi PH, Yang F, Qin S, Zhao DB, Lan JB, Gao G, Hu CW, You JS. Palladium(II)-catalyzed oxidative C–H/C–H cross-coupling of heteroarenes. J Am Chem Soc, 2010, 132: 1822–1824

    Article  CAS  Google Scholar 

  27. Wang Z, Li KZ, Zhao DB, Lan JB, You JS. Palladium-catalyzed oxidative C–H/C–H cross-coupling of indoles and pyrroles with heteroarenes. Angew Chem Int Ed, 2011, 50: 5365–5369

    Article  CAS  Google Scholar 

  28. Dong JX, Huang YM, Qin XR, Cheng YY, Hao J, Wan DY, Li W, Liu XY, You JS. Palladium( II)-catalyzed oxidative C–H/C–H cross-coupling between two structurally similar azoles. Chem Eur J, 2012, 18: 6158–6162

    Article  CAS  Google Scholar 

  29. Wang Z, Song FJ, Zhao YS, Huang YM, Yang L, Zhao DB, Lan JB, You JS. Elements of regiocontrol in the direct heteroarylation of indoles/ pyrroles: synthesis of bi- and fused polycyclic heteroarenes by twofold or tandem fourfold C–H activation. Chem Eur J, 2012, 18: 16616–16620

    Article  CAS  Google Scholar 

  30. Qin XR, Liu H, Qin DK, Wu Q, You JS, Zhao DB, Guo Q, Huang XL, Lan JB. Chelation-assisted Rh(III)-catalyzed C2-selective oxidative C–H/C–H cross-coupling of indoles/pyrroles with arenes. Chem Sci, 2013, 4: 1964–1969

    Article  CAS  Google Scholar 

  31. Liu B, Huang YM, Lan JB, Song FJ, You JS. Pd-catalyzed oxidative C–H/C–H crosscoupling of pyridines with heteroarenes. Chem Sci, 2013, 4: 2163–2167

    Article  CAS  Google Scholar 

  32. Dong JX, Long Z, Song FJ, Wu NJ, Guo Q, Lan JB, You JS. Rhodium or ruthenium-catalyzed oxidative C–H/C–H cross-coupling: direct access to extended ?-conjugated systems. Angew Chem Int Ed, 2013, 52: 580–584

    Article  CAS  Google Scholar 

  33. Sivakova S, Rowan SJ. Nucleobases as supramolecular motifs. Chem Soc Rev, 2005, 34: 9–21

    Article  CAS  Google Scholar 

  34. Davis JT, Spada GP. Supramolecular architectures generated by self-assembly of guanosine derivatives. Chem Soc Rev, 2007, 36: 296–313

    Article  CAS  Google Scholar 

  35. Sessler JL, Lawrence CM, Jayawickramarajah J. Molecular recognition via base-pairing. Chem Soc Rev, 2007, 36: 314–325

    Article  CAS  Google Scholar 

  36. Butler RS, Cohn P, Tenzel P, Abboud KA, Castellano RK. Synthesis, photophysical behavior, and electronic structure of push-pull purines. J Am Chem Soc, 2009, 131: 623–633

    Article  CAS  Google Scholar 

  37. Čerňa I, Pohl R, Klepetářová B, Hocek M. Direct C–H arylation of purines: development of methodology and its use in regioselective synthesis of 2,6,8-trisubstituted purines. Org Lett, 2006, 8: 5389–5392

    Article  Google Scholar 

  38. Storr TE, Baumann CG, Thatcher RJ, Ornellas SD, Whitwood AC, Fairlamb IJS. Pd(0)/Cu(I)-mediated direct arylation of 2'-deoxyadenosines: mechanistic role of Cu(I) and reactivity comparisons with related purine nucleosides. J Org Chem, 2009, 74: 5810–5821

    Article  CAS  Google Scholar 

  39. Cerna I, Pohl R, Klepetářová B, Hocek M. Intramolecular direct C–H arylation approach to fused purines. synthesis of purino[8,9-f]phenanthridines and 5,6-dihydropurino[8,9- a]isoquinolines. J Org Chem, 2010, 75: 2302–2308

    Article  CAS  Google Scholar 

  40. Liu B, Qin XR, Li KZ, Li XY, Guo Q, Lan JB, You JS. A palladium/copper bimetallic catalytic system: dramatic improvement for Suzuki-Miyauratype direct C–H arylation of azoles with arylboronic acids. Chem Eur J, 2010, 16: 11836–11839

    Article  CAS  Google Scholar 

  41. Liu B, Wang Z, Wu NJ, Li ML, You JS, Lan JB. Discovery of a full-color-tunable fluorescent core framework through direct C–H (hetero)arylation of N-heterocycles. Chem Eur J, 2012, 18: 1599–1603

    Article  CAS  Google Scholar 

  42. Sharma V, Kumar V. Indolizine: a biologically active moiety. Med Chem Res, 2014, 23: 3593–3606

    Article  CAS  Google Scholar 

  43. Henry GD. De novo synthesis of substituted pyridines. Tetrahedron, 2004, 60: 6043–6061

    Article  CAS  Google Scholar 

  44. Michael JP. Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep, 2005, 22: 627–646

    Article  CAS  Google Scholar 

  45. Carey JS, Laffan D, Thomson C, Williams MT. Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem, 2006, 4: 2337–2347

    Article  CAS  Google Scholar 

  46. Schlosser M, Mongin F. Pyridine elaboration through organometallic intermediates: regiochemical control and completeness. Chem Soc Rev, 2007, 36: 1161–1172

    Article  CAS  Google Scholar 

  47. Campeau LC, Rousseaux S, Fagnou K. A solution to the 2-pyridyl organometallic cross-coupling problem: regioselective catalytic direct arylation of pyridine N-oxides. J Am Chem Soc, 2005, 127: 18020–18021

    Article  CAS  Google Scholar 

  48. Leclerc JP, Fagnou K. Palladium-catalyzed cross-coupling reactions of diazine N-oxides with aryl chlorides, bromides, and iodides. Angew Chem Int Ed, 2006, 45: 7781–7786

    Article  CAS  Google Scholar 

  49. Cho SH, Hwang SJ, Chang S. Palladium-catalyzed C–H functionalization of pyridine N-oxides: highly selective alkenylation and direct arylation with unactivated arenes. J Am Chem Soc, 2008, 130: 9254–9256

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Wang, Z., Cheng, Y. et al. Oxygen as an oxidant in palladium/copper-cocatalyzed oxidative C-H/C-H cross-coupling between two heteroarenes. Sci. China Chem. 58, 1292–1296 (2015). https://doi.org/10.1007/s11426-015-5386-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5386-x

Keywords

Navigation