Skip to main content
Log in

Enhanced release of the poorly soluble drug itraconazole loaded in ordered mesoporous silica

  • Articles
  • Special Topic Chemistry from Chinese Female Chemists
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

It is known that the energy of the amorphous state of itraconazole loaded in ordered mesoporous materials is high relative to that of the crystalline state and is responsible for enhanced solubility and dissolution rate. We investigated the effects of particle size (0.7–5 μm), mesostructure (2D p6mm, cubic Ia-3d and cubic Fm-3m) and pore size (2.2–15.4 nm) of mesoporous silicas on the release performance of itraconazole. Results indicated that the release performance was not influenced by the particle sizes tested here, that the release performance increased with increasing pore diameter due to the lower probability of drug molecules colliding to recrystallize in large pores, and that the release performance was decreased in the cage-type pore structure (Fm-3m) compared to that in the cylindrical pore structures (p6mm and Ia-3d) because of the small entrance to the cagelike pores that retards the drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pouton CW. Formulation of self-emulsifying drug delivery systems. Adv Drug Delivery Rev, 1997, 25: 47–58

    Article  CAS  Google Scholar 

  2. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci, 1996, 85: 1017–1025

    Article  CAS  Google Scholar 

  3. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov, 2004, 3: 785–796

    Article  CAS  Google Scholar 

  4. Van Speybroeck M, Mols R, Mellaerts R, Thi TD, Martens JA, Humbeeck JV, Annaert P, Mooter GVD, Augustijns P. Combined use of ordered mesoporous silica and precipitation inhibitors for improved oral absorption of the poorly soluble weak base itraconazole. Eur J Pharm Biopharm, 2010, 75: 354–365

    Article  Google Scholar 

  5. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci, 1997, 86: 1–12

    Article  CAS  Google Scholar 

  6. Yanagisawa T, Shimizu T, Kuroda K, Chuzo K. The preparation of alkyltriinethylaininonium & ndash; kaneinite complexes and their conversion to microporous materials. B Chem Soc Jpn, 1990, 63: 988–992

    Article  CAS  Google Scholar 

  7. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279: 548–552

    Article  CAS  Google Scholar 

  8. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc, 1992, 114: 10834–10843

    Article  CAS  Google Scholar 

  9. Ukmar T, Planinšek O. Ordered mesoporous silicates as matrices for controlled release of drugs. Acta Pharmaceut, 2010, 60: 373–385

    Article  CAS  Google Scholar 

  10. Che S, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsumi T. Synthesis and characterization of chiral mesoporous silica. Nature, 2004, 429: 281–284

    Article  CAS  Google Scholar 

  11. Linton P, Alfredsson V. Growth and morphology of mesoporous SBA-15 particles. Chem Mater, 2008, 20: 2878–2880

    Article  CAS  Google Scholar 

  12. Sayari A, Han BH, Yang Y. Simple synthesis route to monodispersed SBA-15 silica rods. J Am Chem Soc, 2004, 126: 14348–14349

    Article  CAS  Google Scholar 

  13. Tan B, Rankin SE. Dual latex/surfactant templating of hollow spherical silica particles with ordered mesoporous shells. Langmuir, 2005, 21: 8180–8187

    Article  CAS  Google Scholar 

  14. Linton P, Wennerstrom H, Alfredsson V. Controlling particle morphology and size in the synthesis of mesoporous SBA-15 materials. Phys Chem Chem Phys, 2010, 12: 3852–3858

    Article  CAS  Google Scholar 

  15. Yu C, Fan J, Tian B, Zhao D. Morphology development of mesoporous materials: a colloidal phase separation mechanism. Chem Mater, 2004, 16: 889–898

    Article  CAS  Google Scholar 

  16. Su B, Lu X, Lu Q. Oriented SBA-15-type silica films on polyimide films with laser-induced periodic microgrooves. Langmuir, 2008, 24: 9695–9699

    Article  CAS  Google Scholar 

  17. Chen Q, Han L, Gao C, Che S. Synthesis of monodispersed mesoporous silica spheres (mmsss) with controlled particle size using gemini surfactant. Microporous Mesoporous Mat, 2010, 128: 203–212

    Article  CAS  Google Scholar 

  18. Chen L, Zhu G, Zhang D, Zhao H, Guo M, Shi W, Qiu S. Novel mesoporous silica spheres with ultra-large pore sizes and their application in protein separation. J Mater Chem, 2009, 19: 2013–2017

    Article  CAS  Google Scholar 

  19. Che S, Garcia-Bennett AE, Yokoi T, Sakamoto K, Kunieda H, Terasaki O, Tatsumi T. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nat Mater, 2003, 2: 801–805

    Article  CAS  Google Scholar 

  20. Alberius PCA, Frindell KL, Hayward RC, Kramer EJ, Stucky GD, Chmelka BF. General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem Mater, 2002, 14: 3284–3294

    Article  CAS  Google Scholar 

  21. Yu C, Yu Y, Zhao D. Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO-PBO-PEO copolymer. Chem Commun, 2000, 7: 575–576

    Article  Google Scholar 

  22. Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, Wang W, Xu J, Deng F, Simmons JM, Qiu S, Zhu G. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Ed, 2009, 121: 9621–9624

    Article  Google Scholar 

  23. Wei J, Wang H, Deng Y, Sun Z, Shi L, Tu B, Luqman M, Zhao D. Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. J Am Chem Soc, 2011, 133: 20369–20377

    Article  CAS  Google Scholar 

  24. Zhu L, Wang D, Wei X, Zhu X, Li J, Tu C, Su Y, Wu J, Zhu B, Yan D. Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and mr imaging. J Control Release, 2013, 169: 228–238

    Article  CAS  Google Scholar 

  25. Chen Y, Chen H, Zhang S, Chen F, Zhang L, Zhang J, Zhu M, Wu H, Guo L, Feng J, Shi J. Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Adv Funct Mater, 2011, 21: 270–278

    Article  CAS  Google Scholar 

  26. Muhammad F, Guo M, Qi W, Sun F, Wang A, Guo Y, Zhu G. PH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J Am Chem Soc, 2011, 133: 8778–8781

    Article  CAS  Google Scholar 

  27. Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chem Mater, 2000, 13: 308–311

    Article  Google Scholar 

  28. Charnay C, Bégu S, Tourné-Péteilh C, Nicole L, Lerner DA, Devoisselle JM. Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Eur J Pharm Biopharm, 2004, 57: 533–540

    Article  CAS  Google Scholar 

  29. Mellaerts R, Mols R, Jammaer JAG, Aerts CA, Annaert P, Humbeeck JV, Mooter GVD, Augustijns P, Martens JA. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. Eur J Pharm Biopharm, 2008, 69: 223–230

    Article  CAS  Google Scholar 

  30. Van Speybroeck M, Barillaro V, Thi TD, Mellaerts R, Martens J, Humbeeck JV, Vermant J, Annaert P, Mooter GVD, Augustijns P. Ordered mesoporous silica material SBA-15: a broad-spectrum formulation platform for poorly soluble drugs. J Pharm Sci, 2009, 98: 2648–2658

    Article  Google Scholar 

  31. Salonen J, Kaukonen AM, Hirvonen J, Lehto VP. Mesoporous silicon in drug delivery applications. J Pharm Sci, 2008, 97: 632–653

    Article  CAS  Google Scholar 

  32. Fan J, Yu C, Gao F, Lei J, Tian B, Wang L, Luo Q, Tu B, Zhou W, Zhao D. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew Chem Int Ed, 2003, 115: 3254–3258

    Article  Google Scholar 

  33. Alba-Simionesco C, Coasne B, Dosseh G, Dudziak G, Gubbins KE, Radhakrishnan R, Sliwinska-Bartkowiak M. Effects of confinement on freezing and melting. J Phys: Condens Matter, 2006, 18: R15

    CAS  Google Scholar 

  34. Kresge C, Leonowicz M, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359: 710–712

    Article  CAS  Google Scholar 

  35. Yano K, Fukushima Y. Particle size control of mono-dispersed super-microporous silica spheres. J Mater Chem, 2003, 13: 2577–2581

    Article  CAS  Google Scholar 

  36. Wang Y, Zhang F, Wang Y, Ren J, Li C, Liu X, Guo Y, Guo Y, Lu G. Synthesis of length controllable mesoporous SBA-15 rods. Mater Chem Phys, 2009, 115: 649–655

    Article  CAS  Google Scholar 

  37. Ding Y, Yin G, Liao X, Huang Z, Chen X, Yao Y, Li J. A convenient route to synthesize SBA-15 rods with tunable pore length for lysozyme adsorption. Microporous Mesoporous Mat, 2013, 170: 45–51

    Article  CAS  Google Scholar 

  38. Kleitz F, Choi SH, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun, 2003: 2136–2137

    Google Scholar 

  39. Mellaerts R, Jammaer JA, Van Speybroeck M, Chen H, Humbeeck JV, Augustijns P, Mooter GVD, Martens JA. Physical state of poorly water soluble therapeutic molecules loaded into SBA-15 ordered mesoporous silica carriers: a case study with itraconazole and ibuprofen. Langmuir, 2008, 24: 8651–8659

    Article  CAS  Google Scholar 

  40. Tozuka Y, Sasaoka S, Nagae A, Moribe K, Oguchi T, Yamamoto K. Rapid adsorption and entrapment of benzoic acid molecules onto mesoporous silica (FSM-16). J Colloid Interface Sci, 2005, 291: 471–476

    Article  CAS  Google Scholar 

  41. Lee S, Nam K, Kim M, Jun S, Park JS, Woo JS, Hwang SJ. Preparation and characterization of solid dispersions of itraconazole by using aerosol solvent extraction system for improvement in drug solubility and bioavailability. Arch Pharm Res, 2005, 28: 866–874

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunai Che.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Che, S. Enhanced release of the poorly soluble drug itraconazole loaded in ordered mesoporous silica. Sci. China Chem. 58, 400–410 (2015). https://doi.org/10.1007/s11426-015-5333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5333-x

Keywords

Navigation