Skip to main content
Log in

Structure-dependent electrocatalytic activity of La1-x Sr x MnO3 for oxygen reduction reaction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The electrocatalytic activity toward oxygen reduction reaction is studied on the perovskite oxide La1-x Sr x MnO3, as prepared under different firing temperatures. X-ray diffraction shows that three different crystal phases featuring tetragonal, cubic, and orthorhombic symmetries form with increasing crystallinities. The electrocatalytic activity is characterized by cyclic voltammetry and linear sweeping voltammetry for the three phases of La1-x Sr x MnO3. We find that the tetragonal phase has the best catalytic activity among the three crystal phases, with the largest onset potential of 0.147 V. The synergistic effect between the volume per unit cell and crystallinity is indicated to account for the good catalytic activity of the tetragonal phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for pemfcs. Appl Catal B, 2005, 56: 9–35

    Article  CAS  Google Scholar 

  2. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy, 2011, 88: 981–1007

    Article  CAS  Google Scholar 

  3. Popov BN, Xie T, Kim T, Jung WS, Kriston A, Murphy B, Gamliel D, Ganesan P. Development of ultra-low Pt alloy cathode catalyst for PEM fuel cells. ECS Trans, 2013, 50: 773–785

    Article  Google Scholar 

  4. Stephens IEL, Bondarenko AS, Gronbjerg U, Rossmeisl J, Chorkendorff I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ Sci, 2012, 5: 6744–6762

    Article  CAS  Google Scholar 

  5. Chen Z, Higgins D, Yu A, Zhang L, Zhang J. A review on nonprecious metal electrocatalysts for pem fuel cells. Energy Environ Sci, 2011, 4: 3167–3192

    Article  CAS  Google Scholar 

  6. Serov A, Kwak C. Review of non-platinum anode catalysts for DMFC and PEMFC application. Appl Catal B, 2009, 90: 313–320

    Article  CAS  Google Scholar 

  7. Wang B. Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources, 2005, 152: 1–15

    Article  CAS  Google Scholar 

  8. Zhang L, Zhang J, Wilkinson DP, Wang H. Progress in preparation of non-noble electrocatalysts for pem fuel cell reactions. J Power Sources, 2006, 156: 171–182

    Article  CAS  Google Scholar 

  9. Shao Y, Sui J, Yin G, Gao Y. Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl Catal B, 2008, 79: 89–99

    Article  CAS  Google Scholar 

  10. Jaouen F, Herranz J, Lefevre M, Dodelet JP, Kramm UI, Herrmann I, Bogdanoff P, Maruyama J, Nagaoka T, Garsuch A. Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Appl Mater Inter, 2009, 1: 1623–1639

    Article  CAS  Google Scholar 

  11. Bezerra CW, Zhang L, Liu H, Lee K, Marques AL, Marques EP, Wang H, Zhang J. A review of heat-treatment effects on activity and stability of pem fuel cell catalysts for oxygen reduction reaction. J Power Sources, 2007, 173: 891–908

    Article  CAS  Google Scholar 

  12. Chung HT, Won JH, Zelenay P. Active and stable carbon nanotube/ nanoparticle composite electrocatalyst for oxygen reduction. Nat Commun, 2013, 4: 1–5

    CAS  Google Scholar 

  13. Cheon JY, Kim T, Choi Y, Jeong HY, Kim MG, Sa YJ, Kim J, Lee Z, Yang TH, Kwon K, Terasaki O, Park GG, Adzic RR, Joo SH. Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction. Sci Rep, 2013, 3: 1–8

    Article  Google Scholar 

  14. Cheng F, Shen J, Peng B, Pan Y, Tao Z, Chen J. Rapid roomtemperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat Chem, 2011, 3: 79–84

    Article  CAS  Google Scholar 

  15. Wang G, Cheng F, Yu Y, Liang C, Xu T, Pan M. Sc-IrO2NR-carbon hybrid: a catalyst with high electrochemical stability for oxygen reduction. Sci China Chem, 2013, 56: 131–136

    Article  CAS  Google Scholar 

  16. Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo JC, Pennycook SJ, Dai H. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nano, 2012, 7: 394–400

    Article  CAS  Google Scholar 

  17. Sunarso J, Torriero AAJ, Zhou W, Howleet PC, Forsyth M. Oxygen reduction reaction activity of La-based perovskite oxides in alkaline medium: a thin-film rotating ring-disk electrode study. J Phys Chem C, 2012, 116: 5827–5834

    Article  CAS  Google Scholar 

  18. Poux T, Napolskiy FS, Dintzer T, Kéranguéven G, Istomin SY, Tsirlina GA, Antipov EV, Savinova ER. Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction. Catal Today, 2012, 189: 83–92

    Article  CAS  Google Scholar 

  19. Yuasa M, Yamazoe N, Shimanoe K. Durability of carbon-supported La-Mn-based perovskite-type oxides as oxygen reduction catalysts in strong alkaline solution. J Electrochem Soc, 2011, 158: A411–A416

    Article  CAS  Google Scholar 

  20. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat Chem, 2011, 3: 546–550

    Article  CAS  Google Scholar 

  21. Miyazaki K, Kawakita K-i, Abe T, Fukutsuka T, Kojima K, Ogumi Z. Single-step synthesis of nano-sized perovskite-type oxide/carbon nanotube composites and their electrocatalytic oxygen-reduction activities. J Mater Chem, 2011, 21: 1913–1917

    Article  CAS  Google Scholar 

  22. Tulloch J, Donne SW. Activity of perovskite La1-x SrxMnO3 catalysts towards oxygen reduction in alkaline electrolytes. J Power Sources, 2009, 188: 359–366

    Article  CAS  Google Scholar 

  23. Singh R, Malviya M, Sinha A, Chartier P. Polypyrrole and La1-x Sr x MnO3 (0≤x;≤0.4) composite electrodes for electroreduction of oxygen in alkaline medium. Electroch Acta, 2007, 52: 4264–4271

    Article  CAS  Google Scholar 

  24. Wang Y, Cheng HP. Oxygen reduction activity on perovskite oxide surfaces: a comparative first-principles study of LaMnO3, LaFeO3, and LaCrO3. J Phys Chem C, 2013, 117: 2106–2112

    Article  CAS  Google Scholar 

  25. Suntivich J, Gasteiger HA, Yabuuchi N, Shao-Horn Y. Electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode. J Electrochem Soc, 2010, 157: B1263–B1268

    Article  CAS  Google Scholar 

  26. Kakihana M, Yoshimura M. Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method. Bull Chem Soc Jpn, 1999, 72: 1427–1443

    Article  CAS  Google Scholar 

  27. Patterson AL. The scherrer formula for X-ray particle size determination. Phys Rev, 1939, 56: 978–982

    Article  CAS  Google Scholar 

  28. Rousse G, Masquelier C, Rodriguez-Carvajal J, Elkaim E, Lauriat JP, Martinez J. X-ray study of the spinel LiMn2O4 at low temperatures. Chem Mater, 1999, 11: 3629–3635

    Article  CAS  Google Scholar 

  29. Schmidt TJ, Gasteiger HA, Stäb GD, Urban PM, Kolb DM, Behm RJ. Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration. J Electrochem Soc, 1998, 145: 2354–2358

    Article  CAS  Google Scholar 

  30. Takasu Y, Yoshinaga N, Sugimoto W. Oxygen reduction behavior of RuO2, IrO2 and IrM (M: Ru, Mo, W, V) O x binary oxide electrodes in a sulfuric acid solution. Electrochem Commun, 2008, 10: 668–672

    Article  CAS  Google Scholar 

  31. Yakel H. On the structures of some compounds of the perovskite type. Acta Crystal, 1955, 8: 394–398

    Article  CAS  Google Scholar 

  32. Trasatti S, Petrii O. Real surface area measurements in electrochemistry. J Electroanal Chem, 1992, 327: 353–376

    Article  CAS  Google Scholar 

  33. Wang H, Liang Y, Li Y, Dai H. Co1-x S-graphene hybrid: a highperformance metal chalcogenide electrocatalyst for oxygen reduction. Angew Chem Int Ed, 2011, 50: 10969–10972

    Article  CAS  Google Scholar 

  34. Li S, Zhang L, Liu H, Pan M, Zan L, Zhang J. Heat-treated cobalttripyridyl triazine (Co-TPTZ) electrocatalysts for oxygen reduction reaction in acidic medium. Electroch Acta, 2010, 55: 4403–4411

    Article  CAS  Google Scholar 

  35. Liu G, Zhang HM, Wang MR, Zhong HX, Chen J. Preparation,characterization of ZrOxNy/C and its application in PEMFC as an electrocatalyst for oxygen reduction. J Power Sources, 2007, 172: 503–510

    Article  CAS  Google Scholar 

  36. Marković NM, Gasteiger HA, Grgur BN, Ross PN. Oxygen reduction reaction on Pt: effects of bromide. J Electroanal Chem, 1999, 467: 157–163

    Article  Google Scholar 

  37. Yamamoto K, Imaoka T, Chun WJ, Enoki O, Katoh, Takenaga M, Sonoi A. Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat Chem, 2009, 1: 397–402

    Article  CAS  Google Scholar 

  38. Zinola CF, Castro Luna AM, Triaca WE, Arvia AJ. Kinetics and mechanism of the electrochemical reduction of molecular oxygen on platinum in KOH: influence of preferred crystallographic orientation. J Appl Electrochem, 1994, 24: 531–541

    Article  CAS  Google Scholar 

  39. Hossain MS, Tryk D, Yeager E. The electrochemistry of graphite and modified graphite surfaces: the reduction of O2. Electroch Acta, 1989, 34: 1733–1737

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu Pan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Xu, T., Wen, S. et al. Structure-dependent electrocatalytic activity of La1-x Sr x MnO3 for oxygen reduction reaction. Sci. China Chem. 58, 871–878 (2015). https://doi.org/10.1007/s11426-015-5326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5326-9

Keywords

Navigation