Skip to main content
Log in

Kinetics and mechanism of the electrochemical reduction of molecular oxygen on platinum in KOH: influence of preferred crystallographic orientation

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The oxygen electroreduction reaction has been studied at both preferred oriented and conventional polycrystalline platinum rotating disc electrodes in x m KOH (0.05 ⩽ x ⩽ 3.0) aqueous solutions under oxygen saturation at 25°C. At low current densities, Tafel lines with slope -0.060 V decade−1 have been obtained at all platinum electrodes. At high current densities, higher Tafel slopes ranging from -0.18 to -0.40 V decade−1 have been observed, depending on the type of preferred oriented Pt and KOH concentration. Rotating ring-disc electrode data have shown that a higher amount of H2O2 is produced on one type of preferred oriented surface at all KOH concentrations. A complex reaction scheme has been used to evaluate the electrochemical rate constants of the reaction steps at three platinum electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Srinivasan and J. O'M. Bockris, ‘Fuel Cells: Their Electrochemistry’, McGraw-Hill, New York (1969) Chapter 9.

    Google Scholar 

  2. M. W. Breiter, ‘Electrochemical Processes in Fuel Cells’, Springer-Verlag, New York (1969).

    Google Scholar 

  3. M. R. Tarasevich, A. Sadkowski and E. B. Yeager, in ‘Comprehensive Treatise of Electrochemistry’ (edited by J. O'M. Bockris, E. B. Yeager, S. U. M. Kahn and R. E. White), Vol. 7, Plenum Press, New York (1983) Chapter 7, p. 301.

    Google Scholar 

  4. E. Yeager, Electrochim. Acta 29 (1984) 1527.

    Article  CAS  Google Scholar 

  5. Su-Moon Park, S. Ho, S. Aruliah, M. Weber, C. Ward, R. Venter and S. Srinivasan, J. Electrochem. Soc. 1134 (1986) 1641.

    Google Scholar 

  6. A. Damjanovic, M. Genshaw and J. O'M. Bockris, ibid. 114 (1967) 1107.

    CAS  Google Scholar 

  7. D. Sepa, E. M. Vojnovic and A. Damjanovic, Electrochim. Acta 25 (1979) 149.

    Google Scholar 

  8. F. El Kadiri, R. Faure and R. Durand, J. Electroanal. Chem. 301 (1991) 177.

    Article  CAS  Google Scholar 

  9. C. F. Zinola, A. M. Castro Luna, W. E. Triaca and A. J. Arvia, to be published.

  10. W. E. O'Grady, E. J. Taylor and S. Srinivasan, J. Electroanal. Chem. 1132 (1992) 1147.

    Google Scholar 

  11. A. E. Bolzán, A. M. Castro Luna, A. Visintin, R. C. Salvarezza and A. J. Arvia, Electrochim. Acta 33 (1988) 1743.

    Google Scholar 

  12. W. J. Albery and S. Brúckenstein, Trans. Faraday Soc. 62 (1966) 1920.

    CAS  Google Scholar 

  13. H. Angerstein-Kozlowska, in ‘Comprehensive Treatise of Electrochemistry’, (edited by E. B. Yeager, J. O'M. Bockris, B. E. Conway and S. Sarangapani), Vol. 9, Plenum Press, New York/London (1984) Chapter 2, pp. 15–61.

    Google Scholar 

  14. A. Visintin, W. E. Triaca and A. J. Arvia, J. Electroanal. Chem. 284 (1990) 465.

    Article  CAS  Google Scholar 

  15. K. Dj. Popovic, N. M. Markovic, A. V. Tripkovic and R. R. Adzic, ibid. 313 (1991) 184.

    Article  Google Scholar 

  16. K. E. Gubbin and R. D. Walker, J. Electrochem. Soc. 112 (1965) 469.

    Google Scholar 

  17. H. S. Harned and M. A. Cook, J. Am. Chem. Soc. 59 (1937) 496.

    CAS  Google Scholar 

  18. M. K. Tham, R. D. Walker and K. E. Gubbin, J. Phys. Chem. 74 (1970) 1747.

    Article  CAS  Google Scholar 

  19. ‘International Critical Tables’, Vol. VII, 4th edn, (edited by E. W. Washburn), McGraw-Hill, New York (1933) p. 212.

    Google Scholar 

  20. K. A. Striebel, F. R. McLamon and E. J. Cairns, J. Electrochem. Soc. 137 (1990) 3351.

    CAS  Google Scholar 

  21. V. G. Levich, ‘Physicochemical Hydrodynamics’, Prentice Hall, Englewood Cliffs, NJ (1962).

    Google Scholar 

  22. F. C. Nart and T. Iwasita, J. Electroanal. Chem. 308 (1991) 277.

    Article  CAS  Google Scholar 

  23. E. Gileadi, S. Argade and J. O'M. Bockris, J. Phys. Chem. 70 (1966) 2044.

    CAS  Google Scholar 

  24. J. C. Huang, R. K. Sen and E. Yeager, J. Electrochem. Soc. 126 (1979) 786.

    CAS  Google Scholar 

  25. A. Damjanovic, M. A. Genshaw and J. O'M. Bockris, J. Chem. Phys. 45 (1964) 4057.

    Google Scholar 

  26. R. W. Zurilla, R. K. Sen and E. B. Yeager, J. Electrochem. Soc. 125 (1978) 1123.

    Google Scholar 

  27. H. S. Wroblowa, Y. C. Pan and G. Razumney, J. Electroanal. Chem. 69 (1976) 195.

    Article  CAS  Google Scholar 

  28. L. Müller and L. N. Nekrasov, Electrochim. Acta 9 (1964) 1015.

    Article  Google Scholar 

  29. M. R. Tarasevich, Elektrokhimiya 4 (1968) 210.

    CAS  Google Scholar 

  30. A. J. Appleby and M. V. Savy, J. Electroanal. Chem. 92 (1978) 15.

    Article  CAS  Google Scholar 

  31. K. L. Hsueh, E. R. González, S. Srinivasan and D. T. Chin, J. Electrochem. Soc. 131 (1984) 823.

    CAS  Google Scholar 

  32. H. S. Wroblowa and S. B. Qaderi, J. Electroanal. Chem. 279 (1990) 231.

    Article  CAS  Google Scholar 

  33. V. Jovancicevic and J. O'M. Bockris, J. Electrochem. Soc. 133 (1986) 1797.

    CAS  Google Scholar 

  34. L. Vázquez, J. M. Gómez Rodríguez, J. Gómez Herrero, A. M. Baró, N. García, J. C. Canullo and A. J. Arvia, Surf. Sci. 181 (1987) 98.

    Article  Google Scholar 

  35. J. Gómez, L. Vázquez, A. M. Baró, N. García, C. L. Perdriel, W. E. Triaca and A. J. Arvia, Nature 323 (1986) 612.

    Article  Google Scholar 

  36. R. M. Cerviño, A. J. Arvia and W. E. Vielstich, Surf. Sci. 154 (1985) 623.

    Google Scholar 

  37. A. Hamelin, in ‘Modem Aspects of Electrochemistry’, (edited by B. E. Conway, J. O'M. Bockris and R. E. White), Vol. 16, Plenum Press, New York (1985) Chapter 1.

    Google Scholar 

  38. A. Hamelin, T. Vitanov, E. Sevastianov and A. Popov, J. Electroanal. Chem. 145 (1985) 225.

    Google Scholar 

  39. G. Estiú, S. A. Maluendes, E. A. Castro and A. J. Arvia, J. Phys. Chem. 92 (1988) 2512.

    Google Scholar 

  40. P. R. Norton, Surf. Sci. 47 (1975) 98.

    Article  CAS  Google Scholar 

  41. H. Steininger, S. Lehwald and H. Ibach, Surf. Sci. 123 (1982) 1.

    CAS  Google Scholar 

  42. C. T. Campbell, G. Ertl, H. Kuipers and J. Segner, Surf. Sci. 107 (1981) 220.

    CAS  Google Scholar 

  43. M. A. Barteau, E.I. Ko and R. J. Madix, ibid. 102 (1981) 99.

    Article  CAS  Google Scholar 

  44. J. L. Gland, B. A. Sexton and G. B. Fisher, ibid. 95 (1980) 587.

    Article  CAS  Google Scholar 

  45. G. Maure, P. Légaré and G. Lindauer, ibid. 80 (1979) 238.

    Google Scholar 

  46. J. Stöhr, J. L. Gland, W. Eberhardt, D. Outka, R. J. Madix, F. Sette, R. J. Koestner and U. Doebler, Phys. Rev. Lett. 51 (1983) 2414.

    Google Scholar 

  47. Y. Ohno, T. Matsushima, S. Tanaka, E. Yagasaki and M. Kamada, Surf. Sci. 275 (1992) 281.

    CAS  Google Scholar 

  48. P. R. Norton, P. E. Binder and K. Griffiths, J. Vac. Sci. Technol. A2 (1984) 1028.

    Google Scholar 

  49. G. A. Benesh and L. S. G. Liyanage, Surf. Sci. 261 (1992) 207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinola, C.F., Castro Luna, A.M., Triaca, W.E. et al. Kinetics and mechanism of the electrochemical reduction of molecular oxygen on platinum in KOH: influence of preferred crystallographic orientation. J Appl Electrochem 24, 531–541 (1994). https://doi.org/10.1007/BF00249854

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249854

Keywords

Navigation