Skip to main content
Log in

Hybridization chain reaction triggered controllable one-dimensional assembly of gold nanoparticles

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Assembling and ordering nanomaterials into desirable patterns are considerably significant, since the properties of nanomaterials depend not only on the size and shape, but also on the spatial arrangement among the collective building blocks. In this work, the DNA self-assembly technology of hybridization chain reaction (HCR) provided a convenient method to yield long double-strand DNA (dsDNA) to install gold nanoparticles (AuNPs) into one dimensional assembly along the skeleton of dsDNA. Interestingly, the tunable length of AuNPs assemblies along dsDNA chain could be achieved by adjusting the reaction time of HCR, which is based on the formation of covalent bond between Au and the -SH group of DNA. Compared with weak light scattering of single AuNP, these AuNPs assemblies could be clearly imaged under the dark field microscopy, indicating that the light scattering was greatly improved after assembling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qian W, Huang X, Kang B, El-Sayed MA. JBiomed Opt, 2010, 15: 046025–046029

    Article  Google Scholar 

  2. Li J, Fu HE, Wu LJ, Zheng AX, Chen GN, Yang HH. Anal Chem, 2012, 84: 5309–5315

    Article  CAS  Google Scholar 

  3. You J, Zhang G, Li C. ACSNano, 2010, 4: 1033–1041

    CAS  Google Scholar 

  4. Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, Ekren H, Taylan M. Anal Chem, 2003, 75: 2181–2187

    Article  CAS  Google Scholar 

  5. Fischler M, Sologubenko A, Mayer J, Clever G, Burley G, Gierlich J, Carell T, Simon U. Chem Commun, 2008: 169–171

    Google Scholar 

  6. Chang WS, Slaughter LS, Khanal BP, Manna P, Zubarev ER, Link S. Nano Lett, 2009, 9: 1152–1157

    Article  CAS  Google Scholar 

  7. Patil AJ, Vickery JL, Scott TB, Mann S. Adv Mater, 2009, 21: 3159–3164

    Article  CAS  Google Scholar 

  8. Deng ZX, Tian Y, Lee SH, Ribbe AE, Mao CD. Angew Chem Int Ed, 2005, 44: 3582–3585

    Article  CAS  Google Scholar 

  9. Wang Y, Li YF, Huang CZ. JPhys Chem C, 2009, 113: 4315–4320

    Article  CAS  Google Scholar 

  10. Ohya Y, Miyoshi N, Hashizume M, Tamaki T, Uehara T, Shingubara S, Kuzuya A. Small, 2012, 8: 2335–2340

    Article  CAS  Google Scholar 

  11. Fan JA, He Y, Bao K, Wu C, Bao J, Schade NB, Manoharan VN, Shvets G, Nordlander P, Liu DR, Capasso F. Nano Lett, 2011, 11: 4859–4864

    Article  CAS  Google Scholar 

  12. Zhen SJ, Guo FL, Li YF, Huang CZ. Sci China Chem, 2013, 56: 387–392

    Article  CAS  Google Scholar 

  13. Zhen SJ, Huang CZ, Wang J, Li YF. J Phys Chem C, 2009, 113: 21543–21547

    Article  CAS  Google Scholar 

  14. Zhang L, Ma H, Yang L. RSCAdv, 2014, 4: 45207–45213

    CAS  Google Scholar 

  15. Du BA, Li ZP, Liu CH. Angew Chem Int Ed, 2006, 45: 8022–8025

    Article  CAS  Google Scholar 

  16. Perez-Rentero S, Grijalvo S, Penuelas G, Fabrega C, Eritja R. Molecules, 2014, 19: 10495–10523

    Article  Google Scholar 

  17. Deng H, Xu Y, Liu Y, Che Z, Guo H, Shan S, Sun Y, Liu X, Huang K, Ma X, Wu Y, Liang XJ. Anal Chem, 2012, 84: 1253–1258

    Article  CAS  Google Scholar 

  18. Chen W, Bian A, Agarwal A, Liu L, Shen H, Wang L, Xu C, Kotov NA. Nano Lett, 2009, 9: 2153–2159

    Article  CAS  Google Scholar 

  19. Shen W, Deng H, Gao Z. J Am Chem Soc, 2012, 134: 14678–14681

    Article  CAS  Google Scholar 

  20. Dirks RM, Pierce NA. Proc Natl Acad Sci USA, 2004, 101: 15275–15278

    Article  CAS  Google Scholar 

  21. Chen Y, Xu J, Su J, Xiang Y, Yuan R, Chai Y. Anal Chem, 2012, 84: 7750–7755

    Article  CAS  Google Scholar 

  22. Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C, Tan W. Proc Natl Acad Sci USA, 2013, 110: 7998–8003

    Article  CAS  Google Scholar 

  23. Hu PP, Liu H, Zhen SJ, Li CM, Huang CZ. Biosens Bioelectron, 2015, 73: 228–233

    Article  CAS  Google Scholar 

  24. Adura C, Guerrero S, Salas E, Medel L, Riveros A, Mena J, Arbiol J, Albericio F, Giralt E, Kogan MJ. ACS Appl Mater Inter), 2013, 5: 4076–4085

    Article  CAS  Google Scholar 

  25. Wang Y, Li YF, Wang J, Sang Y, Huang CZ. Chem Commun, 2010, 46: 1332–1334

    Article  Google Scholar 

  26. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Science, 1997, 277: 1078–1081

    Article  CAS  Google Scholar 

  27. Sun X, Guan L, Shan X, Zhang Y, Li Z. JAgric Food Chem, 2012, 60: 10979–10984

    Article  CAS  Google Scholar 

  28. Zhang S, Wang K, Li Z, Feng Z, Sun T. RSC Adv, 2015, 5: 44714–44721

    Article  CAS  Google Scholar 

  29. Ma C, Wang W, Mulchandani A, Shi C. Anal Biochem, 2014, 457: 19–23

    Article  CAS  Google Scholar 

  30. Liu Y, Huang CZ. ACS Nano, 2013, 7: 11026–11034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengzhi Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Du, Y., Lie, S. et al. Hybridization chain reaction triggered controllable one-dimensional assembly of gold nanoparticles. Sci. China Chem. 59, 1513–1518 (2016). https://doi.org/10.1007/s11426-015-0529-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-0529-8

Keywords

Navigation