Skip to main content
Log in

Structural analysis of [Bmim]2CuCl4 ionic liquids in the presence of water and ethanol by XAFS technique

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The structure of [Bmim]2CuCl4 ionic liquids (Bmim: 1-butyl-3-methylimidazolium) with different ratios of H2O and C2H5OH was investigated using X-ray absorption fine structure (XAFS) technique. In this study, XAFS was employed to directly probe the conformational variations of copper ions in [Bmim]2CuCl4 with the addition of either water or ethanol. XAFS analysis confirmed that the structure of ionic liquids gradually transformed from tetrahedral to octahedral configuration with the increase in ratio of H2O. Our results also showed that water molecules coordinated with the copper ions of [Bmim]2CuCl4, leading to the conformational change in ionic liquids. However, the XAFS spectra of [Bmim]2CuCl4/C2H5OH indicated no coordination of anhydrous ethanol with the copper ions of [Bmim]2CuCl4. The structure of [Bmim]2CuCl4 ionic liquids is maintained as the tetrahedral configuration in presence of ethanol. Therefore, anhydrous ethanol causes little variation in the structure of ionic liquids and it is a good solvent for the dilution of ionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seddon KR. Ionic liquids for clean technology. J Chem Tech Biotechnol, 1997, 68: 351–356

    Article  CAS  Google Scholar 

  2. Macias-Salinas R, Chavez-Velasco JA, Aquino-Olivos MA, de la Cruz JLM, Sanchez-Ochoa JC. Accurate modeling of co2 solubility in ionic liquids using a cubic eos. Ind Eng Chem Res, 2013, 52: 7593–7601

    Article  CAS  Google Scholar 

  3. Eike DM, Brennecke JF, Maginn EJ. Predicting melting points of quaternary ammonium ionic liquids. Green Chem, 2003, 5: 323–328

    Article  CAS  Google Scholar 

  4. Holbrey JD, Seddon KR. The phase behaviour of 1-alkyl-3-methyl-imidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc, Dalton Trans, 1999, 13: 2133–2139

    Article  Google Scholar 

  5. Earle MJ, Seddon KR, Ionic liquids. Green solvents for the future. Pure Appl Chem, 2000, 72: 1391–1398

    Article  CAS  Google Scholar 

  6. De Souza RF, Padilha JC, Goncalves RS, Dupont J. Room temperature dialkylimidazolium ionic liquid-based fuel cells. Electrochem Commun, 2003, 5: 728–731

    Article  Google Scholar 

  7. Rossi LM, Machado G, Fichtner PFP, Teixeira SR, Dupont J. On the use of ruthenium dioxide in 1-n-butyl-3-methylimidazolium ionic liquids as catalyst precursor for hydrogenation reactions. Catal Lett, 2004, 92: 149–155

    Article  CAS  Google Scholar 

  8. Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem, 2009, 11: 339–345

    Article  CAS  Google Scholar 

  9. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev, 1999, 99: 2071–2083

    Article  CAS  Google Scholar 

  10. Shi D, Pootrakulchote N, Li RZ, Guo J, Wang Y, Zakeeruddin SM, Gratzel M, Wang P. New efficiency records for stable dye-sensitized solar cells with low-volatility and ionic liquid electrolytes. J Phys Chem C, 2008, 112: 17046–17050

    Article  CAS  Google Scholar 

  11. Dupont J, de Souza RF, Suarez PAZ. Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev, 2002, 102: 3667–3691

    Article  CAS  Google Scholar 

  12. Endres F. Physical chemistry of ionic liquids. Phys Chem Chem Phys, 2010, 12: 1648–1648

    Article  CAS  Google Scholar 

  13. Widegren JA, Magee JW. Density, viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water. J Chem Eng Data, 2007, 52: 2331–2338

    Article  CAS  Google Scholar 

  14. Widegren JA, Saurer EM, Marsh KN, Magee JW. Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity. J Chem Thermodyn, 2005, 37: 569–575

    Article  CAS  Google Scholar 

  15. Khupse ND, Kumar A. The cosolvent-directed diels-alder reaction in ionic liquids. J Phys Chem A, 2011, 115: 10211–10217

    Article  CAS  Google Scholar 

  16. Khupse ND, Kumar A. Dramatic change in viscosities of pure ionic liquids upon addition of molecular solvents. J Solution Chem, 2009, 38: 589–600

    Article  CAS  Google Scholar 

  17. Deetlefs M, Hardacre C, Nieuwenhuyzen M, Sheppard O, Soper AK. Structure of ionic liquid-benzene mixtures. J Phys Chem B, 2005, 109: 1593–1598

    Article  CAS  Google Scholar 

  18. Martins VL, Nicolau BG, Urahata SM, Ribeiro MCC, Torresi RM. Influence of the water content on the structure and physicochemical properties of an ionic liquid and its Li+ mixture. J Phys Chem B, 2013, 117: 8782–8792

    Article  CAS  Google Scholar 

  19. Takamuku T, Kyoshoin Y, Shimomura T, Kittaka S, Yamaguchi T. Effect of water on structure of hydrophilic imidazolium-based ionic liquid. J Phys Chem B, 2009, 113: 10817–10824

    Article  CAS  Google Scholar 

  20. Yoshimura Y, Takekiyo T, Okamoto C, Hatano N, Abe H. Switching of hydrogen bonds of water in ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate. J Raman Spectrosc, 2013, 44: 475–480

    Article  CAS  Google Scholar 

  21. Aono M, Imai Y, Abe H, Matsumoto H, Yoshimura Y. UV-Vis spectroscopic study of room temperature ionic liquid-water mixtures: N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate. Thermochimica Acta, 2012, 532: 179–182

    Article  CAS  Google Scholar 

  22. Feng S, Voth GA. Molecular dynamics simulations of imidazolium-based ionic liquid/water mixtures: alkyl side chain length and anion effects. Fluid Phase Equilibria, 2010, 294: 148–156

    Article  CAS  Google Scholar 

  23. Li C, Guo XJ, He YX, Jiang Z, Wang YX, Chen SM, Fu HY, Zou Y, Dai S, Wu GZ. Compression of ionic liquid when confined in porous silica nanoparticles. RSC Adv, 2013, 3: 9618–9621

    Article  CAS  Google Scholar 

  24. Li C, Wang YX, Guo XJ, Jiang Z, Jiang FL, Zhang WL, Zhang WF, Fu HY, Xu HJ, Wu GZ. Pt2Cl8 2− dimer formation of [bmim]2PtCl4 ionic liquid when confined in silica nanopores. J Phys Chem C, 2014, 118: 3140–3144

    Article  CAS  Google Scholar 

  25. Zou Y, Xu HJ, Wu GZ, Jiang Z, Chen SM, Huang YY, Huang W, Wei XJ. Structural analysis of [ChCl]m[ZnCl2]n ionic liquid by X-ray absorption fine structure spectroscopy. J Phys Chem B, 2009, 113: 2066–2070

    Article  CAS  Google Scholar 

  26. Jensen MP, Dzielawa JA, Rickert P, Dietz ML. EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic liquid. J Am Chem Soc, 2002, 124: 10664–10665

    Article  CAS  Google Scholar 

  27. Yu S, Brown HM, Huang XW, Zhou XD, Amonette JE, Zhang ZC. Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. Applied Catalysis A: General, 2009, 361: 117–122

    Article  Google Scholar 

  28. Chen SM, Wu GZ, Sha ML, Huang SR. Transition of ionic liquid bmimPF6 from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes. J Am Chem Soc, 2007, 129: 2416–2417

    Article  CAS  Google Scholar 

  29. Chen SM, Liu YS, Fu HY, He YX, Li C, Huang W, Jiang Z, Wu GZ. Unravelling the role of the compressed gas on melting point of liquid confined in nanospace. J Phys Chem Lett, 2012, 3: 1052–1055

    Article  CAS  Google Scholar 

  30. Zhong C, Sasaki T, Jimbo-Kobayashi A, Fujiwara E, Kobayashi A, Tada M, Iwasawa Y. Syntheses, structures, and properties of a series of metal ion-containing dialkylimidazolium ionic liquids. Bull Chem Soc Jpn, 2007, 80: 2365–2374

    Article  CAS  Google Scholar 

  31. Rehr JJ, Albers RC. Theoretical approaches to X-ray absorption fine structure. Rev Mod Phys, 2000, 72: 621–654

    Article  CAS  Google Scholar 

  32. Shadle SE, Pennerhahn JE, Schugar HJ, Hedman B, Hodgson KO, Solomon EI. X-ray absorption spectroscopic studies of the blue copper site-metal and ligand k-edge studies to probe the origin of the epr hyperfine splitting in plastocyanin. J Am Chem Soc, 1993, 115: 767–776

    Article  CAS  Google Scholar 

  33. Abe H, Yoshimura Y, Imai Y, Goto T, Matsumoto H. Phase behavior of room temperature ionic liquid-H2O mixtures: N,N-diethyl-N-methyl-N-2-methoxyethyl ammonium tetrafluoroborate. J Mol Liq, 2009, 150: 16–21

    Article  CAS  Google Scholar 

  34. Lopez-Pastor M, Ayora-Canada MJ, Valcarcel M, Lendl B. Association of methanol and water in ionic liquids elucidated by infrared spectroscopy using two-dimensional correlation and multivariate curve resolution. J Phys Chem B, 2006, 110: 10896–10902

    Article  CAS  Google Scholar 

  35. Downard A, Earle MJ, Hardacre C, McMath SEJ, Nieuwenhuyzen M, Teat SJ. Structural studies of crystalline 1-alkyl-3-methylimidazolium chloride salts. Chem Mater, 2004, 16: 43–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhong Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Li, C., Fu, H. et al. Structural analysis of [Bmim]2CuCl4 ionic liquids in the presence of water and ethanol by XAFS technique. Sci. China Chem. 58, 716–721 (2015). https://doi.org/10.1007/s11426-014-5304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5304-7

Keywords

Navigation