Skip to main content

Structural Organization in Neat Ionic Liquids and in Their Mixtures

  • Chapter
  • First Online:
The Structure of Ionic Liquids

Abstract

Room temperature ionic liquids (RTILs) represent a class of materials whose employment in several applications is considered as a green alternative to toxic chemicals. Their potentialities are deemed to grow the more we understand their chemical-physical behaviour. As a matter of fact properties as basic as structural organization or microscopic interactions turn out to play a major role in many of their chemical-physical features, such as diffusive properties or solvation capabilities. Their being complex solvent media is a direct consequence of the chemical composition that leads to as diverse interactions as dispersive, coulombic, H-bonding, just to mention the most commonly encountered in conventional RTILs. The degree of comprehension of the structure in neat and mixed RTILs is steadily growing thank to the use of several complementary techniques such as diffraction and spectroscopic techniques and the link between their chemical details and the structure at microscopic as well as mesoscopic level is being unravelled by these studies. That opens the way to the rationalisation not only of basic chemical-physical properties but also of their bulk performances as solvent media. In this contribution we present experimental results aiming provide a structural description of two classes of samples. A first selection of diffraction experiments will aim to address the now well-known issue of mesoscopic structural organization in medium chain length RTILs. We will report original diffraction data from the family of 1-alkyl,3-methylimidazolium tetrafluoroborate as a function of the side alkyl chain length, highlighting the role of this parameter in affecting the mesoscopic order in the neat RTIL. We will also show experimental data highlighting the role of polar versus apolar interactions in determining this phenomenology describing results from a sample whose side chain is not an alkyl one. In the second part of this contribution, experimental results will be reported on binary mixtures of selected tetrafluoroborate salts and water. By the use of complementary techniques such as Raman and infrared spectroscopies, X-Ray and neutron diffraction we will provide a detailed overview of the phase diagram, nature of interactions as well as structural properties of these binary mixtures, expanding the current level of description for these systems. Overall we aim to provide a description of how the proposed experimental techniques can be successfully used to provide useful information in exploring the exciting, complex issue of RTILs and their mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holbrey J.: J. Chem. Soc. Dalton. Trans. 2133–2139 (1999)

    Google Scholar 

  2. Bradley, A.E., Hardacre, C., Holbrey, J.D., et al.: Chem. Mater. 14, 629–635 (2002). doi: 10.1021/cm010542v

    Google Scholar 

  3. Triolo, A., Russina, O., Bleif, H.-J., Di Cola, E.: J. Phys. Chem. B 111, 4641–4644 (2007). doi: 10.1021/jp067705t

  4. Takamuku, T., Kyoshoin, Y., Shimomura, T., et al.: J. Phys. Chem. B 113, 10817–10824 (2009). doi: 10.1021/jp9042667

    Google Scholar 

  5. Kanzaki, R., Mitsugi, T., Fukuda, S., et al.: J. Mol. Liq. 147, 77–82 (2009). doi: 10.1016/j.molliq.2008.10.003

  6. Santos, C.S., Annapureddy, H.V.R., Murthy, N.S., et al.: J. Chem. Phys. 134, 064501 (2011). doi: 10.1063/1.3526958

    Google Scholar 

  7. Pádua, A.A.H., Costa Gomes, M.F., Canongia Lopes, J.N.A.: Acc. Chem. Res. 40, 1087–1096 (2007). doi: 10.1021/ar700050q

  8. Greaves, T.L., Drummond, C.J.: Chem. Soc. Rev. (2012). doi: 10.1039/c2cs35339c

  9. Russina, O., Triolo, A., Fazio, B., et al.: Faraday Discuss. 97–109 (2012). doi: 10.1039/c1fd00073j

  10. Russina, O., Triolo, A., Gontrani, L., Caminiti, R.: J. Phys. Chem. Lett. 3, 27 (2012)

    Google Scholar 

  11. Annapureddy, H.V.R., Kashyap, H.K., De Biase, P.M., Margulis, C.J.: J. Phys. Chem. B 114, 16838–16846 (2010). doi: 10.1021/jp108545z

    Google Scholar 

  12. Russina, O., Triolo, A., Gontrani, L., et al.: J. Phys. Condens. Matter 21:424121. doi: 10.1088/0953-8984/21/42/424121

  13. Santos, C.S., Murthy, N.S., Baker, G.A., Castner, E.W.: J. Chem. Phys. 134, 121101 (2011). doi: 10.1063/1.3569131

    Google Scholar 

  14. Martinelli, A., Marechals, M., Östlund, Å., Cambedouzou, J.: Phys. Chem. Chem. Phys. (2013). doi: 10.1039/c3cp00097d

  15. Hardacre, C., Holbrey, J.D., Mullan, C.L., et al.: J. Chem. Phys. 133, 074510 (2010). doi: 10.1063/1.3473825

  16. Tanford, C.: J. Phys. Chem. 76, 3020–3024 (1972)

    Google Scholar 

  17. Triolo, A., Russina, O., Caminiti, R., et al.: Chem. Commun. 48, 4959–4961 (2012). doi: 10.1039/c2cc31550e

    Google Scholar 

  18. Kashyap, H.K., Santos, C.S., Daly, R.P., et al.: J. Phys. Chem. B 117, 1130–1135 (2013). doi: 10.1021/jp311032p

    Google Scholar 

  19. Hayes, R., Imberti, S., Warr, G.G., Atkin, R.: Phys. Chem. Chem. Phys. 13, 3237–3247 (2011). doi: 10.1039/c0cp01137a

  20. Greaves, T.L., Kennedy, D.F., Mudie, S.T., Drummond, C.J.: J. Phys. Chem. B 114, 10022–10031 (2010). doi: 10.1021/jp103863z

    Google Scholar 

  21. Yang, P., Voth, G. A., Xiao, D., et al.: J. Chem. Phys. 135, 034502 (2011). doi: 10.1063/1.3601752

  22. Bardak, F., Xiao, D., Hines, L.G., et al.: ChemPhysChem, 1–15 (2012). doi: 10.1002/cphc.201200026

  23. Greaves, T.L., Kennedy, D.F., Kirby, N., Drummond, C.J.: Phys. Chem. Chem. Phys. 13, 13501–13509 (2011). doi: 10.1039/c1cp20496c

    Google Scholar 

  24. Moreno, M., Castiglione, F., Mele, A., et al.: J. Phys. Chem. B 112, 7826–7836 (2008). doi: 10.1021/jp800383g

    Google Scholar 

  25. Feng, S., Voth, G.A.: Fluid Phase Equilib. 294, 148–156 (2010). doi: 10.1016/j.fluid.2010.02.034

  26. Zhong, X., Fan, Z., Liu, Z., Cao, D.: J. Phys. Chem. B 116, 3249–3263 (2012). doi: 10.1021/jp3001543

    Google Scholar 

  27. Schröder, C., Rudas, T., Neumayr, G., et al.: J. Chem. Phys. 127, 234503 (2007). doi: 10.1063/1.2805074

    Google Scholar 

  28. Cammarata, L., Kazarian, S.G., Salter, P.A., Welton, T.: Phys. Chem. Chem. Phys. 3, 5192–5200 (2001). doi: 10.1039/b106900d

    Google Scholar 

  29. Jeon, Y., Sung, J., Kim, D., et al.: J. Phys. Chem. B 112, :923–928 (2008). doi: 10.1021/jp0746650

    Google Scholar 

  30. Fazio, B., Triolo, A., Di Marco, G.: J. Raman Spectrosc. 39, 233–237 (2008). doi: 10.1002/jrs.1825

  31. Danten, Y., Cabaço, M.I., Besnard, M.: J. Mol. Liq. 153, 57–66 (2010). doi: 10.1016/j.molliq.2009.07.001

    Google Scholar 

  32. Danten, Y., Cabaço, M.I., Besnard, M.: J. Phys. Chem. A 113, 2873–2889 (2009). doi: 10.1021/jp8108368

    Google Scholar 

  33. Takekiyo, T., Imai, Y., Hatano, N., et al.: Chem. Phys. Lett. 511, 241–246 (2011). doi: 10.1016/j.cplett.2011.06.022

    Google Scholar 

  34. Chang, H.-C., Jiang, J.-C., Liou, Y.-C., et al.: J. Chem. Phys. (2008). doi: 10.1063/1.2958256

  35. Chang, H.-C., Jiang, J.-C., Liou, Y.-C., et al.: Anal. Sci. 24, 1305–1309 (2008)

    Google Scholar 

  36. Bowers, J., Butts, C.P., Martin, P.J., et al.: Langmuir 20, 2191–2198 (2004)

    Google Scholar 

  37. Rebelo, L., Najdanovic-Visak, V.: Green Chem. 6, 369–381 (2004)

    Google Scholar 

  38. Almásy, L., Turmine, M., Perera, A.: J. Phys. Chem. B 112, 2382–2387 (2008). doi: 10.1021/jp076185e

    Google Scholar 

  39. Malham, I.B., Letellier, P., Turmine, M.: J. Phys. Chem. B 110, 14212–14214 (2006)

    Google Scholar 

  40. Chen, Y., Ke, F., Wang, H., et al.: ChemPhysChem 13, 160–167 (2012). doi: 10.1002/cphc.201100782

  41. Wang, J., Wang, H., Zhang, S., et al.: J.Phys. Chem. B 111, :6181–6188 (2007). doi: 10.1021/jp068798h

    Google Scholar 

  42. Mele, A., Tran, C.D., De Paoli Lacerda, S.H.: Angew. Chem. Int. Ed. Engl. 42, 4364–4366 (2003). doi: 10.1002/anie.200351783

  43. Mele, A., Romanò, G., Giannone, M., et al.: Angew. Chem. Int. Ed. Engl. 45, 1123–1126 (2006). doi: 10.1002/anie.200503745

    Google Scholar 

  44. De Benedetti, P.G.: Metastable liquids : concepts and principles. Princeton University Press, Princeton (1996)

    Google Scholar 

  45. Eisenberg, D., Kauzmann, W.: The structure and properties of water. Oxford University Press, London (1969)

    Google Scholar 

  46. Walrafen, G.E., Fisher, M.E., Hokmabadi, M.S., Yang, W.H.: J. Chem. Phys. 85, 6970 (1986)

    Google Scholar 

  47. Saito, S., Ohmine, I.: J. Chem. Phys. 125, 84506 (2006)

    Google Scholar 

  48. Pieniazek, P.A., Stangret, J.: Vib. Spectrosc. 39, 81 (2005)

    Google Scholar 

  49. Lindgren, J., Hermansson, K., Wójcik, M.J.: J. Phys. Chem. 97, 5254 (1993)

    Google Scholar 

  50. Wang, Y., Li, H., Han, S.A.: J. Phys. Chem. B 110, 24646 (2006)

    Google Scholar 

  51. Cammarata, L., Kazarian, S.G., Salter, P.A., Welton, T. Phys. Chem. Chem. Phys. 3, 5192–5200 (2001). doi: 10.1039/b106900d

    Google Scholar 

  52. Brubach, J.B., Mermet, A., Fiabozzi, A., et al.: J. Phys. Chem. B 105, 430 (2001)

    Google Scholar 

  53. Boissière, C., Brubach, J.B., Mermet, A., et al.: J. Phys. Chem. B 106, 1032 (2002)

    Google Scholar 

  54. Mele, A., Tran, C.D., De Paoli Lacerda, S.H.: Angew. Chem. Int. Ed. Engl. 42, 4364–4366 (2003). doi: 10.1002/anie.200351783

  55. Köddermann, T., Wertz, C., Heintz, A., Ludwig, R.: ChemPhysChem 7, 1944–1949 (2006). doi: 10.1002/cphc.200600034

  56. Ozawa, R., Hayashi, S., Saha, S., et al.: Chem. Lett. 32, 948–949 (2003)

    Google Scholar 

  57. Hayashi, S., Ozawa, R., Hamaguchi, H.-O.: Chem. Lett. 32, 498–499 (2003). doi: 10.1246/cl.2003.498

    Google Scholar 

  58. Hamaguchi, H.-O., Ozawa, R.: Adv. Chem. Phys., 85–104 (2005)

    Google Scholar 

  59. Almásy, L., Turmine, M., Perera, A.: J. Phys. Chem. B 112, 2382–2387 (2008). doi: 10.1021/jp076185e

    Google Scholar 

  60. Jiang, W., Wang, Y., Voth, G.A.: J. Phys. Chem. B 111, 4812–4818 (2007). doi: 10.1021/jp067142l

    Google Scholar 

Download references

Acknowledgements

We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and would like to thank Dr. T. Narayanan for his valuable assistance in exploiting beamline ID02. We thank the Rutherford Appleton Laboratory for provision of beam time at LOQ with the financial support from CNR and Dr. R. K. Heenan, for his valuable support during the beam time. A.T. acknowledges support from FIRB-Futuro in Ricerca (RBFR086BOQ) and PRIN (2009WHPHRH). A.T. warmly remembers the SANS measurements round as one of the last that he could enjoy with the late Prof. R. Triolo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Triolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Russina, O., Fazio, B., Di Marco, G., Caminiti, R., Triolo, A. (2014). Structural Organization in Neat Ionic Liquids and in Their Mixtures. In: Caminiti, R., Gontrani, L. (eds) The Structure of Ionic Liquids. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-01698-6_2

Download citation

Publish with us

Policies and ethics