Skip to main content
Log in

Dendrimers-merging biomimics and photoenergy conversion

  • Mini Reviews
  • Special Topic Chemistry from Chinese Female Chemists
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Dendrimers are well-defined tree-like macromolecules possessing numerous chain ends emanating from a single core, which makes them attractive candidates for mimicking light-harvesting systems and hydrogenases. Photoinduced electron and energy transfers are main processes involved in light-harvesting and photocatalysis. In this article, the general concepts of design strategies and recent developments of photofunctional dendrimers in biomimics of light-harvesting systems and hydrogenases are discussed. The energy transfer and electron transfer processes in light-harvesting dendrimers and the effect of dendritic structures in photochemical hydrogen production are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu XC, Damjanovic A, Ritz T, Schulten K. Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc Natl Acad Sci USA, 1998, 95: 5935–5941

    Article  CAS  Google Scholar 

  2. Andreiadis ES, Chavarot-Kerlidou M, Fontecave M, Artero V. Artificial photosynthesis: from molecular catalysts for light-driven water splitting to photoelectrochemical cells. Photochem Photobiol, 2011, 87: 946–964

    Article  CAS  Google Scholar 

  3. Feng J, Wang Q, Zhang XJ, Huang YG, Ai XC, Zhang XJ, Zhang JP. Spectroscopic evidence for triplet energy transfer among carotinoids in the LH2 complex from photosynthesis bacterium Rhodopseudomonas palustris. Sci China Ser B, 2004, 47: 80–90

    Article  CAS  Google Scholar 

  4. Thoi VS, Sun YJ, Long JR, Chang CJ. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chem Soc Rev, 2013, 42: 2388–2400

    Article  CAS  Google Scholar 

  5. Frischmann PD, Mahata K, Wuerthner F. Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem Soc Rev, 2013, 42: 1847–1870

    Article  CAS  Google Scholar 

  6. Mcdermott G, Prince SM, Freer AA, Hawthornthwaitelawless AM, Papiz MZ, Cogdell RJ, Isaacs NW. Crystal-structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature, 1995, 374: 517–521

    Article  CAS  Google Scholar 

  7. Jiang DL, Aida T. Bioinspired molecular design of functional dendrimers. Prog Polym Sci, 2005, 30: 403–422

    Article  CAS  Google Scholar 

  8. Liang C, Frechet JMJ. Applying key concepts from nature: transition state stabilization, pre-concentration and cooperativity effects in dendritic biomimetics. Prog Polym Sci, 2005, 30, 385–402

    Article  CAS  Google Scholar 

  9. Jang WD, Selim KMK, Lee CH, Kang IK. Bioinspired application of dendrimers: from bio-mimicry to biomedical applications. Prog Polym Sci, 2009, 34: 1–23

    Article  CAS  Google Scholar 

  10. Cheng YC, Fleming GR. Dynamics of light harvesting in photosynthesis. Annu Rev Phys Chem, 2009, 60: 241–262

    Article  CAS  Google Scholar 

  11. Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R. Lessons from nature about solar light harvesting. Nat Chem, 2011, 3: 763–774

    Article  CAS  Google Scholar 

  12. Frischmann PD, Mahata K, Würthner F. Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem Soc Rev, 2013, 42: 1847–1870

    Article  CAS  Google Scholar 

  13. Wasielewski MR. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc Chem Res, 2009, 42: 1910–1921

    Article  CAS  Google Scholar 

  14. Ajayaghosh A, Praveen AK, Vijayakuma C. Organogels as scaffolds for excitation energy transfer and light harvesting. Chem Soc Rev, 2008, 37: 109–122

    Article  CAS  Google Scholar 

  15. Albinsson B, Hannestad JK, Börjesson K. Functionalized DNA nanostructures for light harvesting and charge separation. Coordin Chem Rev, 2012, 256: 2399–2413

    Article  CAS  Google Scholar 

  16. Zeng Y, Li YY, Chen JP, Yang GQ, Li Y. Dendrimers: a mimic natural light-harvesting system. Chem Asian J, 2010, 5: 992–1005

    Article  CAS  Google Scholar 

  17. Adronov A, Fréchet JMJ. Light-harvesting dendrimers. Chem Commun, 2000: 1701–1710

    Google Scholar 

  18. Balzani V, Ceroni P, Maestri M, Vicinelli V. Light-harvesting dendrimers. Curr Opin Chem Biol, 2003, 7: 657–665

    Article  CAS  Google Scholar 

  19. Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev, 2010, 110: 1857–1959

    Article  CAS  Google Scholar 

  20. Förster T. Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys, 1948, 2: 55–75

    Article  Google Scholar 

  21. Dexter DL. A theory of sensitized luminescence in solids. J Chem Phys, 1953, 21: 836–850

    Article  CAS  Google Scholar 

  22. Katz JL, Choi S, Jortner J, Rice SA. Triplet exciton bands in aromatic crystals. J Chem Phys, 1963, 39: 1897–1899

    Article  CAS  Google Scholar 

  23. Denti G, Campagna S, Serroni S, Ciano M, Balzani V. Decanuclear homo- and heterometallic polypyridine complexes: syntheses, absorption spectra, luminescence, electrochemical oxidation, and intercomponent energy transfer. J Am Chem Soc, 1992, 114: 2944–2950

    Article  CAS  Google Scholar 

  24. Xu ZF, Moore JS. Rapid construction of large-size phenylacetylene dendrimers up to 12.5 nanometers in molecular diameter. Angew Chem Int Ed, 1993, 32: 1354–1357

    Article  Google Scholar 

  25. Melinger JS, Pan YC, Kleiman VD, Peng ZH, Davis BL, McMorrow D, Lu M. Optical and photophysical properties of light-harvesting phenylacetylene monodendrons based on unsymmetrical branching. J Am Chem Soc, 2002, 124: 12002–12012

    Article  CAS  Google Scholar 

  26. Atas E, Peng ZH, Kleiman VD. Energy transfer in unsymmetrical phenylene ethynylene dendrimers. J Phys Chem B, 2005, 109: 13553–13560

    Article  CAS  Google Scholar 

  27. Kuroda DG, Singh CP, Peng ZH, Kleiman VD. Mapping excited-state dynamics by coherent control of a dendrimer’s photoemission efficiency. Science, 2009, 326: 263–267

    Article  CAS  Google Scholar 

  28. Adronov A, Gilat SL, Fréchet JMJ, Ohta K, Neuwahl FVR, Fleming GR. Light harvesting and energy transfer in laser-dye-labeled poly(aryl ether) dendrimers. J Am Chem Soc, 2000, 122: 1175–1185

    Article  CAS  Google Scholar 

  29. Bergamini G, Ceroni P, Maestri M, Balzani V, Lee SK, Vogtle F. Forward (singlet-singlet) and backward (triplet-triplet) energy transfer in a dendrimer with peripheral naphthalene units and a benzophenone core. Photochem Photobiol Sci, 2004, 3: 898–905

    Article  CAS  Google Scholar 

  30. Giansante C, Ceroni P, Balzani V, Maestri M, Lee SK, Vogtle F. Photophysical, photochemical, and electrochemical properties of dendrimers with a dimethoxybenzil core. New J Chem, 2007, 31: 1250–1258

    Article  CAS  Google Scholar 

  31. Chen JP, Li SY, Zhang L, Liu BN, Han YB, Yang GQ, Li Y. Light-harvesting and photoisomerization in benzophenone and norbornadiene-labeled poly(aryl ether) dendrimers via intramolecular triplet energy transfer. J Am Chem Soc, 2005, 127: 2165–2171

    Article  CAS  Google Scholar 

  32. Chen JP, Li SY, Zhang L, Li YY, Chen J, Yang GQ, Li Y. Direct observation of the intramolecular triplet-triplet energy transfer in poly(aryl ether) dendrimers. J Phys Chem B, 2006, 110: 4047–4053

    Article  CAS  Google Scholar 

  33. Zhang L, Chen JP, Li SY, Chen J, Li YY, Yang GQ, Li Y. Photophysical and photochemical studies on bis(dendron) poly(aryl ether) dendrimers: intramolecular triplet energy transfer in poly(aryl ether) dendrimers via a folded conformation. J Photochem Photobiol A, 2006, 181: 429–436

    Article  CAS  Google Scholar 

  34. Rehm D, Weller A. Kinetics of fluorescence quenching by electron and H-atom transfer. Isr J Chem, 1970, 8: 259–271

    Article  CAS  Google Scholar 

  35. Stewart GM, Fox MA. Chromophore-labeled dendrons as light harvesting antennae. J Am Chem Soc, 1996, 118: 4354–4360

    Article  CAS  Google Scholar 

  36. Ghaddar TH, Wishart JF, Thompson DW, Whitesell JK, Fox MA. A dendrimer-based electron antenna: paired electron-transfer reactions in dendrimers with a 4,4′-bipyridine core and naphthalene peripheral groups. J Am Chem Soc, 2002, 124: 8285–8289

    Article  CAS  Google Scholar 

  37. Guldi DM, Swartz A, Luo C, Gómez R, Segura JL, Martín N. Rigid dendritic donor-acceptor ensembles: control over energy and electron transduction. J Am Chem Soc, 2002, 124: 10875–10886

    Article  CAS  Google Scholar 

  38. Qu JQ, Pschirer NG, Liu DJ, Stefan A, De Schryver FC, Mullen K. Dendronized perylenetetracarboxdiimides with peripheral triphenylamines for intramolecular energy and electron transfer. Chem Eur J, 2004, 10: 528–537

    Article  CAS  Google Scholar 

  39. Thomas KRJ, Thompson AL, Sivakumar AV, Bardeen CJ, Thayumanavan S. Energy and electron transfer in bifunctional non-conjugated dendrimers. J Am Chem Soc, 2005, 127: 373–383

    Article  CAS  Google Scholar 

  40. Chen J, Chen JP, Li SY, Zhang L, Yang GQ, Li Y. Conversion of intramolecular singlet electron transfer at room temperature into triplet energy transfer at 77 K: photoisomerization in norbornadiene- and carbazole-labeled poly(aryl ether) dendrimers. J Phys Chem B, 2006, 110: 4663–4670

    Article  CAS  Google Scholar 

  41. Chen JP, Zhang L, Li SY, Li YY, Chen J, Yang GQ, Li Y. Valence isomerization in dendrimers by photo-induced electron transfer and energy transfer from the dendrimer backbone to the core. J Photochem Photobiol A, 2007, 185: 67–75.

    Article  CAS  Google Scholar 

  42. Li YY, Han L, Chen JP, Zheng SJ, Zen Y, Li Y, Li SY, Yang GQ. Study on the extent of folding back conformation in poly(aryl ether) dendrimers by intramolecular electron transfer and exciplex formation. Macromolecules, 2007, 40: 9384–9390

    Article  CAS  Google Scholar 

  43. Li M, Li YY, Zeng Y, Chen JP, Li Y. Intramolecular exciplex formation induced by the folding-back conformation of poly(aryl ether) dendrimers. J Phys Chem C, 2009, 113: 11554–11559

    Article  CAS  Google Scholar 

  44. Schenning APHJ, Peeters E, Meijer EW. Energy transfer in supramolecular assemblies of oligo(p-phenylene vinylene)s terminated poly(propylene imine) dendrimers. J Am Chem Soc, 2000, 122: 4489–4495

    Article  CAS  Google Scholar 

  45. Hahn U, Gorka M, Vogtle F, Vicinelli V, Ceroni P, Maestri M, Balzani V. Light-harvesting dendrimers: efficient intra- and intermolecular energy-transfer processes in a species containing 65 chromophoric groups of four different types. Angew Chem Int Ed, 2002, 41: 3595–3598

    Article  CAS  Google Scholar 

  46. Balzani V, Bergamini G, Ceroni P, Marchi E. Designing light harvesting antennas by luminescent dendrimers. New J Chem, 2011, 35: 1944–1954

    Article  CAS  Google Scholar 

  47. Giansante C, Ceroni P, Balzani V, Voegtle F. Self-assembly of a light-harvesting antenna formed by a dendrimer, a Ru-II complex, and a Nd-III ion. Angew Chem Int Ed, 2008, 47: 5422–5425

    Article  CAS  Google Scholar 

  48. Branchi B, Ceroni P, Balzani V, Bergamini G, Klaerner FG, Voegtle F. Adducts between dansylated poly(propylene amine) dendrimers and anthracene clips mediated by Zn-II ions: highly efficient photoinduced energy transfer. Chem Eur J, 2009, 15: 7876–7882

    Article  CAS  Google Scholar 

  49. Marchi E, Baroncini M, Bergamini G, Van Heyst J, Voegtle F, Ceroni P. Photoswitchable metal coordinating tweezers operated by light-harvesting dendrimers. J Am Chem Soc, 2012, 134: 15277–15280

    Article  CAS  Google Scholar 

  50. Pillai ZS, Ceroni P, Kubeil M, Heldt JM, Stephan H, Bergamini G. Dendrimers as Nd3+ ligands: effect of generation on the efficiency of the sensitized Lanthanide emission. Chem Asian J, 2013, 8: 771–777

    Article  CAS  Google Scholar 

  51. De Schryver FC, Vosch T, Cotlet M, Van der Auweraer M, Mullen K, Hofkens J. Energy dissipation in multichromophoric single dendrimers. Acc Chem Res, 2005, 38: 514–522

    Article  Google Scholar 

  52. Weil T, Reuther E, Müllen K. Shape-persistent, fluorescent polyphenylene dyads and a triad for efficient vectorial transduction of excitation energy. Angew Chem Int Ed, 2002, 41: 1900–1904

    Article  CAS  Google Scholar 

  53. Serin JM, Brousmiche DW, Fréchet JMJ. Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. Chem Commun, 2002, 2605–2607

    Google Scholar 

  54. Zhang J, Fischer MKR, Baeuerle P, Goodson TIII. Energy migration in dendritic oligothiophene-perylene bisimides. J Phys Chem B, 2013, 117: 4204–4215

    Article  CAS  Google Scholar 

  55. Zeng Y, Li YY, Li M, Yang GQ, Li Y. Enhancement of energy utilization in light-harvesting dendrimers by the pseudorotaxane formation at periphery. J Am Chem Soc, 2009, 131: 9100–9106

    Article  CAS  Google Scholar 

  56. Hu Rr, Leung NLC, Tang BZ. AIE macromolecules: syntheses, structures and functionalities. Chem Soc Rev, 2014, 43: 4494–4562

    Article  CAS  Google Scholar 

  57. Zeng Y, Li P, Liu XY, Yu YJ, Chen JP, Yang GQ, Li Y. A “breathing” dendritic molecule-conformational fluctuation induced by external stimuli. Polym Chem, 2014, 5: 5978–5984

    Article  CAS  Google Scholar 

  58. Ghirardi ML, Dubini A, Yu JP, Maness PC. Photobiological hydrogen-producing systems. Chem Soc Rev, 2009, 38: 52–61

    Article  CAS  Google Scholar 

  59. Fontecilla-Camps JC, Amara P, Cavazza C, Nicolet Y, Volbeda A. Structure-function relationships of anaerobic gas-processing metalloenzymes. Nature, 2009, 460: 814–822

    Article  CAS  Google Scholar 

  60. Wang W, Yu TJ, Zeng Y, Chen JP, Yang GQ and Li Y. Enhanced photocatalytic hydrogen production from an MCM-41-immobilized photosensitizer-[Fe-Fe] hydrogenase mimic dyad. Photochem Photobiol Sci, 2014, 13: 1590–1597

    Article  CAS  Google Scholar 

  61. Sakamoto M, Kamachi T, Okura I, Ueno A, Mihara H. Photoinduced hydrogen evolution with peptide dendrimer-multi-Zn(II)-porphyrin, viologen, and hydrogenase. Biopolymers, 2001, 59: 103–109

    Article  CAS  Google Scholar 

  62. Jiang DL, Choi CK, Honda K, Li WS, Yuzawa T, Aida T. Photosensitized hydrogen evolution from water using conjugated polymers wrapped in dendrimeric electrolytes. J Am Chem Soc, 2004, 126: 12084–12089

    Article  CAS  Google Scholar 

  63. Yu TJ, Wang W, Chen JP, Zeng Y, Li YY, Yang GQ, Li Y. Dendrimer-encapsulated Pt nanoparticles: an artificial enzyme for hydrogen production. J Phys Chem C, 2012, 116: 10516–10521

    Article  CAS  Google Scholar 

  64. Ravotto L, Mazzaro R, Natali M, Ortolani L, Morandi V, Ceroni P, Bergamini G. Photoactive dendrimer for water photoreduction: a scaffold to combine sensitizers and catalysts. J Phys Chem Lett, 2014, 5: 798–803

    Article  CAS  Google Scholar 

  65. Yu TJ, Zeng Y, Chen JP, Li YY, Yang GQ, Li Y. Exceptional dendrimer-based mimics of diiron hydrogenase for the photochemical production of hydrogen. Angew Chem Int Ed, 2013, 52: 5631–5635

    Article  CAS  Google Scholar 

  66. Collini E, Scholes GD. Coherent intrachain energy migration in a conjugated polymer at room temperature. Science, 2009, 323: 369–373

    Article  CAS  Google Scholar 

  67. Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature, 2010, 463: 644–647

    Article  CAS  Google Scholar 

  68. Olaya-Castro A, Scholes GD. Energy transfer from Forster-Dexter theory to quantum coherent light-harvesting. Int Rev Phys Chem, 2011, 30: 49–77

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Zeng or Yi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zeng, Y., Zhang, X. et al. Dendrimers-merging biomimics and photoenergy conversion. Sci. China Chem. 58, 390–399 (2015). https://doi.org/10.1007/s11426-014-5293-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5293-6

Keywords

Navigation