Skip to main content
Log in

Polydopamine-mediated immobilization of phenylboronic acid on magnetic microspheres for selective enrichment of glycoproteins and glycopeptides

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this work, we demonstrate for the first time, a method to synthesize phenylboronic acid-Fe3O4@polydopamine (Fe3O4@PDA-PBA) magnetic microspheres via the combination of mussel-inspired polydopamine coating and click chemistry. Uniform-size and core-shell structured Fe3O4@PDA-PBA magnetic microspheres with a core diameter of ∼240 nm and a shell thickness of ∼13 nm were obtained as identified by the characterization of the morphology, structure and composition of the synthesized microspheres. We evaluated the selectivity and binding capacity of the Fe3O4@PDA-PBA magnetic microspheres by using standard glycoproteins (ovalbumin, immunoglobulin G and catalase) and nonglycoproteins (human serum albumin, bovine hemoglobin, myoglobin, lysozyme, and ribonuclease A) as model proteins. Adsorption experiments, SDS-PAGE and mass spectrometry analysis demonstrated that the Fe3O4@PDA-PBA magnetic microspheres had much high binding capacity and selectivity for glycoproteins/glycopeptides compared to nonglycoproteins/nonglycopeptides. In addition, the practicability of the Fe3O4@PDA-PBA magnetic microspheres was further assessed by selective capture of glycoproteins from healthy human serum. The good results demonstrated its potential in glycoproteome analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell, 2006, 126: 855–867

    Article  CAS  Google Scholar 

  2. Wada Y, Tajiri M, Yoshida S. Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem, 2004, 76: 6560–6565

    Article  CAS  Google Scholar 

  3. Chen ML, Li LM, Yuan BF, Ma Q, Feng YQ. Preparation and characterization of methacrylate-based monolith for capillary hydrophilic interaction chromatography. J Chromatogr A, 2012, 1230: 54–60

    Article  CAS  Google Scholar 

  4. Chen R, Jiang XN, Sun DG, Han GH, Wang FJ, Ye ML, Wang LM, Zou HF. Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res, 2009, 8: 651–661

    Article  CAS  Google Scholar 

  5. Sun Z, Qin HQ, Wang FJ, Cheng K, Dong MM, Ye ML, Zou HF. Capture and dimethyl labeling of glycopeptides on hydrazide beads for quantitative glycoproteomics analysis. Anal Chem, 2012, 84: 8452–8456

    Article  CAS  Google Scholar 

  6. Qiu R, Regnier FE. Use of multidimensional lectin affinity chromatography in differential glycoproteomics. Anal Chem, 2005, 77: 2802–2809

    Article  CAS  Google Scholar 

  7. Zeng Z, Hincapie M, Pitteri SJ, Hanash S, Schalkwijk J, Hogan JM, Wang H, Hancock WS. A proteomics platform combining depletion, multi-lectin affinity chromatography (M-LAC), and isoelectric focusing to study the breast cancer proteome. Anal Chem, 2011, 83: 4845–4854

    Article  CAS  Google Scholar 

  8. Liu YC, Ren LB, Liu Z. A unique boronic acid functionalized monolithic capillary for specific capture, separation and immobilization of cis-diol biomolecules. Chem Commun, 2011, 47: 5067–5069

    Article  CAS  Google Scholar 

  9. Lin ZA, Pang JL, Yang HH, Cai ZW, Zhang L, Chen GN. One-pot synthesis of an organic-inorganic hybrid affinity monolithic column for specific capture of glycoproteins. Chem Commun, 2011, 47: 9675–9677

    Article  CAS  Google Scholar 

  10. Lin ZA, Pang JL, Lin Y, Huang H, Cai ZW, Zhang L, Chen GN. Preparation and evaluation of a phenylboronate affinity monolith for selective capture of glycoproteins by capillary liquid chromatography. Analyst, 2011, 136: 3281–3288

    Article  CAS  Google Scholar 

  11. Li HY, Wang HY, Liu YC, Liu Z. A benzoboroxole-functionalized monolithic column for the selective enrichment and separation of cis-diol containing biomolecules. Chem Commun, 2012, 48: 4115–4117

    Article  CAS  Google Scholar 

  12. Lu Y, Bie ZJ, Liu YC, Liu Z. Fine-tuning the specificity of boronate affinity monoliths toward glycoproteins through pH manipulation. Analyst, 2013, 138: 290–298

    Article  CAS  Google Scholar 

  13. Springsteen G, Wang B. A detailed examination of boronic acid-diol complexation. Tetrahedron, 2002, 58: 5291–5300

    Article  CAS  Google Scholar 

  14. Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ. Biological applications of magnetic nanoparticles. Chem Soc Rev, 2012, 41: 4306–4334

    Article  CAS  Google Scholar 

  15. Zhou W, Yao N, Yao GP, Deng CH, Zhang XM, Yang PY. Facile synthesis of aminophenylboronic acid-functionalized magnetic nano-particles for selective separation of glycopeptides and glycoproteins. Chem Commun, 2008: 5577–5579

    Google Scholar 

  16. Lin ZA, Zheng JN, Lin F, Zhang L, Cai ZW, Chen GN. Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins. J Mater Chem, 2011, 21: 518–524

    Article  CAS  Google Scholar 

  17. Wang H, Bie Z, Lu C, Liu Z. Magnetic nanoparticles with dendrimer-assisted boronate avidity for the selective enrichment of trace glycoproteins. Chem Sci, 2013, 4: 4298–4303

    Article  CAS  Google Scholar 

  18. Zhang LJ, Xu YW, Yao HL, Xie LQ, Yao J, Lu HJ, Yang PY. Boronic acid functionalized core-satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins. Chem Eur J, 2009, 15: 10158–10166

    Article  CAS  Google Scholar 

  19. Qi DW, Zhang HY, Tang J, Deng CH, Zhang XM. Facile Synthesis of mercaptophenylboronic acid-functionalized core-shell structure Fe3O4@C@Au magnetic microspheres for selective enrichment of glycopeptides and glycoproteins. J Phys Chem C, 2010, 114: 9221–9226

    Article  CAS  Google Scholar 

  20. Lin ZA, Zheng JN, Xia ZW, Yang HH, Zhang L, Chen GN. One-pot synthesis of phenylboronic acid-functionalized core-shell magnetic nanoparticles for selective enrichment of glycoproteins. RSC Adv, 2012, 2: 5062–5065

    Article  CAS  Google Scholar 

  21. Pan MR, Sun YF, Zheng J, Yang WL. Boronic acid-functionalized core-shell-shell magnetic composite microspheres for the selective enrichment of glycoprotein. ACS Appl Mater Interfaces, 2013, 5: 8351–8358

    Article  CAS  Google Scholar 

  22. Zhang XH, He XW, Chen LX, Zhang YK. Boronic acid modified magnetic nanoparticles for enrichment of glycoproteins via azide and alkyne click chemistry. J Mater Chem, 2012, 22: 16520–16526

    Article  CAS  Google Scholar 

  23. Zhang ST, He XW, Chen LX, Zhang YK. Boronic acid functionalized magnetic nanoparticles via thiol-ene click chemistry for selective enrichment of glycoproteins. New J Chem, 2014, 38: 4212–4218

    Article  CAS  Google Scholar 

  24. Zhang XH, He XW, Chen LX, Zhang YK. A combination of distillation-precipitation polymerization and click chemistry: fabrication of boronic acid functionalized Fe3O4 hybrid composites for enrichment of glycoproteins. J Mater Chem B, 2014, 2: 3254–3262

    Article  CAS  Google Scholar 

  25. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318: 426–430

    Article  CAS  Google Scholar 

  26. Ye Q, Zhou F, Liu WM. Bioinspired catecholic chemistry for surface modification. Chem Soc Rev, 2011, 40: 4244–4258

    Article  CAS  Google Scholar 

  27. Links DA, Li N, Binder WH. Click-chemistry for nanoparticle-modification. J Mater Chem, 2011, 21: 16717–16734

    Article  Google Scholar 

  28. Haque M, Peng XH. DNA-associated click chemistry. Sci China Chem, 2014, 57: 215–231

    Article  CAS  Google Scholar 

  29. Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD. Monodisperse magnetic single-grystal ferrite microspheres. Angew Chem Int Ed, 2005, 44: 2782–2785

    Article  CAS  Google Scholar 

  30. Zhou WH, Lu CH, Guo XC, Chen FR, Yang HH, Wang XR. Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition. J Mater Chem, 2010, 20: 880–883

    Article  CAS  Google Scholar 

  31. Boechat N, Ferreira VF, Ferreira SB, Ferreira M de G, da Silva F de C, Bastos MM, Costa M dos S, Lourenço MCS, Pinto AC, Krettli AU, Aguiar AC, Teixeira BM, da Silva NV, Martins PRC, Bezerra FAFM, Camilo ALS, da Silva GP, Costa CCP. Novel 1,2,3-triazole derivatives for use against mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J Med Chem, 2011, 54: 5988–5999

    Article  CAS  Google Scholar 

  32. Borlido L, Azevedo AM, Roque ACA, Aires-Barros MR. Potential of boronic acid functionalized magnetic particles in the adsorption of human antibodies under mammalian cell culture conditions. J Chromatogr A, 2011, 1218: 7821–7827

    Article  CAS  Google Scholar 

  33. Wuhrer M, Koeleman CAM, Hokke CH, Deelder AM. Protein glycosylation analyzed by normal-phase nano-liquid chromatography-mass spectrometry of glycopeptides. Anal Chem, 2005, 77: 886–894

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Zhang or Huanghao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Lin, Z., Zhang, L. et al. Polydopamine-mediated immobilization of phenylboronic acid on magnetic microspheres for selective enrichment of glycoproteins and glycopeptides. Sci. China Chem. 58, 1056–1064 (2015). https://doi.org/10.1007/s11426-014-5286-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5286-5

Keywords

Navigation