Skip to main content
Log in

Molecular catalysis for the steam reforming of ethanol

  • Feature Articles
  • Special Issue In Honor of the 100th Birthday of Prof. Khi-Rui Tsai
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the application of molecular catalysis for steam reforming of ethanol (SRE) is reviewed. Eight metals (Ni, Co, Cu, Pt, Rh, Pd, Ir and Ru) have shown high catalytic activity for SRE. Among them Ni and Rh are very promising because of high d character in the metal bond and low metal-oxygen bonding (vs. metal-carbon). They can effectively promote C-C bond cleavage in the rate-determining process during SRE. However, Rh is weak in water-gas-shift so that CH4 and CO become the main by-products at low reaction temperatures, while Ni catalysts suffer from rapid deactivation due to coking and sintering. Two low-temperature CO-free catalysts have been developed in our lab, namely Rh-Fe/Ca-Al2O3 and carbonyl-derived Rh-Co/CeO2, in which the presence of iron oxide or Co can promote water-gas-shift reaction and significantly improve the SRE performance. On the other hand, adding 3 wt% CaO to Ni/Al2O3 can greatly improve the catalyst stability because the Ca modification not only increases Ni concentration on the Ni/Ca-Al2O3 surface and 3d valence electron density, but also facilitates the water adsorption and coke gasification via water-gas-shift. The availability of abundant surface OH groups helps the formation and conversion of adsorbed formate intermediate. Hence, ethanol reaction on Ca-Al2O3-supported Ni, Pt, Pd and Rh catalysts are found to follow the formate-intermediated pathway, a new reaction pathway alternative to the traditional acetate-intermediated pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Note: If 1 liter of pure ethanol (density 0.79 g/mL) is used directly as a fuel of heat engines, only about 20% of the chemical energy stored in ethanol can be converted to useful mechanical work. This will generate 4392 kJ of energy (per liter) by assuming the enthalpy of combustion is 1277 kJ/mol for ethanol. On the other hand, 1 liter of ethanol can be converted to 92.85 mole of H2 (assuming 90% H2 selectivity in SRE) and will produce 12829 kJ energy (assuming 60% the fuel cell efficiency).

  2. Sun J, Wang Y. Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal, 2014, 4: 1078–1090

    Article  CAS  Google Scholar 

  3. Kumar A, Prasad R, Sharma YC. Steam reforming of ethanol: production of renewable hydrogen. Int J Environ Res Dev, 2014, 4: 203–212

    Google Scholar 

  4. Mattos LV, Jacobs G, Davis BH, Noronha FB. Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem Rev, 2012, 112: 4094–4123

    Article  CAS  Google Scholar 

  5. Trane R, Dahl S, Skjoth-Rasmussen MS, Jensen AD. Catalytic steam reforming of bio-oil. Int J Hydrogen Energy, 2012, 37: 6447–6472

    Article  CAS  Google Scholar 

  6. Ni M, Leung DYC, Leung MKH. A review on reforming bio-ethanol for hydrogen production Int J Hydrogen Energy, 2007, 32: 3238–3247

    Article  CAS  Google Scholar 

  7. Vaidya PD, Rodrigues AE. Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem Eng J, 2006, 117: 38–49

    Article  Google Scholar 

  8. Davda PR, Shabaker JW, Huber GW, Cortrighti RD, Dumesic JA. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts Appl Catal B, 2005, 56: 171–176

    Article  CAS  Google Scholar 

  9. Haryanto A, Fernando S, Murali N, Adhikari S. Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuels, 2005, 19: 2098–2106

    Article  CAS  Google Scholar 

  10. Koh ACW, Leong WK, Chen L, Ang TP, Lin J, Johnson BFG, Khimyak T. Highly efficient ruthenium and ruthenium-platinum cluster-derived nanocatalysts for hydrogen production via ethanol steam reforming. Catal Commun, 2008, 9: 170–175

    Article  CAS  Google Scholar 

  11. Zhong ZY, Ang H, Choong CKS, Chen L, Huang L, Lin J. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming. Phys Chem Chem Phys, 2009, 11: 872–880

    Article  CAS  Google Scholar 

  12. Huang L, Choong CKS, Chen L, Wang Z, Zhong Z, Cuerva CC, Lin J. Monometallic carbonyl-derived CeO2-supported Rh and Co bicomponent catalysts for CO-free, high-yield H2 generation from low-temperature ethanol steam reforming. ChemCatChem, 2013, 5: 220–234

    Article  CAS  Google Scholar 

  13. Chen L, Choong CKS, Zhong Z, Huang L, Ang TP, Hong L, Lin J. Carbon monoxide-free hydrogen production via low-temperature steam reforming of ethanol over iron-promoted Rh catalyst. J Catal, 2010, 276: 197–200

    Article  CAS  Google Scholar 

  14. Choong CKS, Chen L, Du Y, Wang Z, Hong L, Borgna A. Rh-Fe/Ca-Al2O3: a unique catalyst for CO-free hydrogen production in low temperature ethanol steam reforming. Top Catal, 2014, 57: 627–636

    Article  CAS  Google Scholar 

  15. Choong CKS, Huang L, Zhong Z, Lin J, Hong L, Chen L. Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3: II. Acidity/basicity, water adsorption and catalytic activity. Appl Catal A: General, 2011, 407: 155–162

    Article  CAS  Google Scholar 

  16. Choong CKS, Zhong Z, Huang L, Wang Z, Ang TP, Borgna A, Lin J, Hong L, Chen L. Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3: I. Catalytic stability, electronic properties and coking mechanism. Appl Catal A: General, 2011, 407: 145–154

    Article  CAS  Google Scholar 

  17. Chen L, Choong CKS, Zhong Z, Huang L, Wang Z, Lin J. Support and alloy effects on activity and product selectivity for ethanol steam reforming over supported nickel cobalt catalysts. Int J Hydrogen Energy, 2012, 37: 16321–16332

    Article  CAS  Google Scholar 

  18. Choong CKS, Zhong Z, Huang L, Borgna A, Hong L, Chen L, Lin J. Infrared evidence of a formate-intermediate mechanism over Ca-modified supports in low-temperature ethanol steam reforming. ACS Catal, 2014, 4: 2359–2363

    Article  CAS  Google Scholar 

  19. Lin J, Neoh KG, Teo WKJ. Thermogravimetry-FTIR study of the surface formate decomposition on Cu, CuCl, Cu2O and CuO correlations between reaction selectivity and structural properties. Chem Soc, Faraday Trans, 1994, 9: 355–362

    Article  Google Scholar 

  20. Fishtik I, Alexander A, Datta R, Geana D. A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions. Int J Hydrogen Energy, 2000, 25: 31–45

    Article  CAS  Google Scholar 

  21. Garcia EY, Laborde MA. Hydrogen production by the steam reforming of ethanol: thermodynamic analysis. Int J Hydrogen Energy, 1991, 16: 16–307

    Article  Google Scholar 

  22. Vasudeva K, Mitra N, Umansankar P, Dhingra SC. Steam reforming of ethanol for hydrogen production: thermodynamic analysis. Int J Hydrogen Energy, 1996, 21: 13–18

    Article  CAS  Google Scholar 

  23. Vaidya PD, Rodrigues AE. Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem Eng, 2006, 17: 39–49

    Article  Google Scholar 

  24. Singhto W, Laosiripojana N, Assabumrungrat S, Charojrochkul S. Steam reforming of bio-ethanol over Ni on Ce-ZrO2 support: influence of redox properties on the catalyst reactivity. Songklanakarin J Sci Technol, 2006, 28: 1251–1264

    Google Scholar 

  25. Llorca J, Piscina PR de la, Sales J. Homs direct production of hydrogen from ethanolic aqueous solutions over oxidecatalysts N. Chem Commun, 2001: 641–642

    Google Scholar 

  26. Llorca J, Piscina PR de la, Dalmon JA, Sales J, Homs N. CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts effect of the metallic precursor. Appl Catal B, 2003, 43: 355–369

    Article  CAS  Google Scholar 

  27. Llorca J, Homs N, Piscina PR de la. In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts. J Catal, 2004, 27: 556–560

    Article  Google Scholar 

  28. Vecchietti J, Bonivardi A, Xu W, Stacchiola D, Delgado JJ, Calatayud M, Collins SnE. Understanding the role of oxygen vacancies in the water gas shift reaction on ceria-supported platinum catalysts. ACS Catal, 2014, 4: 2088–2096

    Article  CAS  Google Scholar 

  29. Llorca L, Homs N, Sales J, Piscin PR de la. Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming. J Catal, 2002, 209: 306–317

    Article  CAS  Google Scholar 

  30. Wang Z, Wang H, Liu Y. La1−x CaxFe1−x CoxO3: a stable catalyst for oxidative steam reforming of ethanol to produce hydrogen. RSC Adv, 2013, 3: 10027–10036

    Article  CAS  Google Scholar 

  31. Xu W, Liu Z, Johnston-Peck AC, Senanayake SD, Zhou G, Stacchiola D, Stach EA, Rodriguez JA. Steam reforming of ethanol on Ni/CeO2: reaction pathway and interaction between Ni and the CeO2 support. ACS Catal, 2013, 3: 975–984

    Article  CAS  Google Scholar 

  32. Cavallaro S. Ethanol steam reforming on Rh/Al2O3 catalysts. Energ Fuel, 2000, 14: 1195–1199

    Article  CAS  Google Scholar 

  33. Duan S, Senkan S. Catalytic conversion of ethanol to hydrogen using combinatorial methods. Ind Eng Chem Res, 2005, 44: 6381–6386

    Article  CAS  Google Scholar 

  34. Auprêtre F, Descorme C, Duprez D. Bio-ethanol catalytic steam reforming over supported metal catalysts. Catal Comm, 2002, 3: 263–267

    Article  Google Scholar 

  35. Liguras DK, Kondarides DI, Verykios XE. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Appl Catal B, 2003, 43: 345–354

    Article  CAS  Google Scholar 

  36. Basagiannis AC, Panagiotopoulou P, Verykios XE. Low temperature steam reforming of ethanol over supported noble metal catalysts. Top Catal, 2008, 51: 2–12

    Article  CAS  Google Scholar 

  37. Frusteri F, Freni S, Spadaro L, Chiodo V, Bonura G, Donato S, Cavallaro S. H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts. Catal Commun, 2004, 5: 611–615

    Article  CAS  Google Scholar 

  38. Idriss H. Ethanol reactions over the surfaces of noble metal/cerium oxide catalysts. Platin Met Rev, 2004, 48: 105–115

    Article  CAS  Google Scholar 

  39. Ferrin P, Simonetti D, Kandoi S, Kunkes E, Dumesic JA, Nørskov JK, Mavrikakis M. Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations. J Am Chem Soc, 2009, 131: 5809–5815

    Article  CAS  Google Scholar 

  40. Mavrikakis M, Barteau MA. Oxygenate reaction pathways on transition metal surfaces. J Mol Catal A: Chem, 1998, 131: 135–147

    Article  CAS  Google Scholar 

  41. Sinfelt JH, Yates JC. Catalytic hydrogenolysis of ethane over noble metals of Group VIII. J Catal, 1967, 8: 85–90

    Google Scholar 

  42. Sinfelt JH, Taylor WF, Yates DJC. Catalysis over supported metals. III. Comparison of metals of known surface area for ethane hydrogenolysis. J Phys Chem, 1965, 69: 95–101

    Article  CAS  Google Scholar 

  43. Gates SM, Russell JN, Yates Jr JT. Bond activation sequence observed in the chemisorption and surface reaction of ethanol on Ni(111). Surf Sci, 1986, 171: 111–134

    Article  CAS  Google Scholar 

  44. Maírikakis M, Barteaur MA. Oxygenate reaction pathways on transition metal surfaces. J Mol Catal A: Chem, 1998, 131: 135–147

    Article  Google Scholar 

  45. Davis L, Barteau MA. The influence of oxygen on the selectivity of alcohol conversion on Pd(111) surface. Sur Sci, 1988, 197: 123–152

    Article  CAS  Google Scholar 

  46. Alcalá R, Mavrikakis M, Dumesic JA. DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt(111). J Catal, 2003, 218: 178–190

    Article  Google Scholar 

  47. Morton D, Cole-Hamilton DJ, Utuk ID, Paneque-Sosa M, Manuel L. Hydrogen production from ethanol catalysed by Group 8 metal complexes. J Chem Soc, Dalton Trans, 1989, 3: 489–495

    Article  Google Scholar 

  48. Deluga GA, Salge JR, Schmidt LD, Verykios XE. Renewable hydrogen from ethanol by autothermal reforming. Science, 2004, 303: 993–997

    Article  CAS  Google Scholar 

  49. Ferencz Zs, Erdohelyi A, Baan K, Oszko A, Ovari L, Konya Z, Papp C, Steinruck HP, Kiss J. Effects of support and Rh additive on Co-based catalysts in the ethanol steam reforming reaction. ACS Catal, 2014, 4: 1205–1218

    Article  CAS  Google Scholar 

  50. Senanayake SD, Evans J, Agnoli S, Barrio L, Chen TL, Hrbek J, Rodriguez JA. Water-gas shift and CO methanation reactions over Ni-CeO2(111) catalysts. Top Catal, 2011, 54: 34–41 Han X, Yu Y, He H, Shan W. Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported on Ce-La solid solution. Int J Hydrogen Energy, 2013, 38: 10293–10304

    Article  CAS  Google Scholar 

  51. Aupretre F, Descorme C, Duprez D, Casanave D, Uzio D. Ethanol steam reforming over MgxNi1−x Al2O3 spinel oxide-supported Rh catalysts. J Catal, 2005, 233: 464–477

    Article  CAS  Google Scholar 

  52. Duprez D. Selective steam reforming of aromatic compounds on metal catalysts. Appl Catal A: Gen, 1992, 82: 111–157

    Article  CAS  Google Scholar 

  53. Martin D, Duprez D. Mobility of surface species on oxides. 1. Isotopic exchange of 18O2 with 16O of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. Activation by noble metals. Correlation with oxide basicity. J Phys Chem, 1996, 100: 9429–9438

    Article  CAS  Google Scholar 

  54. Rostrup-Nielsen JR. Activity of nickel catalysts for steam reforming of hydrocarbons. J Catal, 1973, 31: 173–199

    Article  CAS  Google Scholar 

  55. Sutton JE, Panagiotopoulou P, Verykios XE, Vlachos DG. Combined DFT. Micro-kinetic, and experimental study of ethanol steam reforming on Pt. J Phys Chem C, 2013, 117: 4691–4706

    Article  CAS  Google Scholar 

  56. Panagiotopoulou P, Verykios XE. Mechanistic aspects of the low temperature steam reforming of ethanol over supported Pt catalysts. Int J Hydrogen Energ, 2012, 37: 16333–16345

    Article  CAS  Google Scholar 

  57. Sanchez-Sanchez MC, Yerga RMN, Kondarides DI, Verykios XE, Fierro JLG. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and Pt-Ni catalysts supported on γ-Al2O3. J Phys Chem A, 2010, 114: 3873–3882

    Article  Google Scholar 

  58. Yee A, Morrison SJ, Idriss H. A study of ethanol reaction over Pt/CeO2 by temperature-programmed desorption and in situ FT-IR spectroscopy: evidence of benzene formation. J Catal, 2000, 191: 30–45

    Article  CAS  Google Scholar 

  59. Erdohelyi A, Raskó J, Kecskés T, Tóth M, Domok M, Baañ K. Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catal Today, 2006, 116: 367–376

    Article  CAS  Google Scholar 

  60. Kagel RO. Infrared investigation of the adsorption and surface reactions of the C1 through C4 normal alcohols on γ-alumina. J Phys Chem, 1967, 71: 844–850

    Article  CAS  Google Scholar 

  61. Kagel RO, Greenler RG. Infrared study of the adsorption of methanol and ethanol on magnesium oxide. J Chem Phys, 1968, 49: 1638–1647

    Article  CAS  Google Scholar 

  62. Yee A, Morrison SJ, Idriss H. A study of the reaction of ethanol on CeO2 and Pd/CeO2 by steady state react ions, TPD and in-situ FT-IR. J Catal, 1999, 186: 279–295

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianyi Lin or Luwei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Chen, L., Choong, C.K.S. et al. Molecular catalysis for the steam reforming of ethanol. Sci. China Chem. 58, 60–78 (2015). https://doi.org/10.1007/s11426-014-5262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5262-0

Keywords

Navigation