Skip to main content
Log in

Electro-catalytic role of insulator/conductor interface in MgO/PEDOT composite electrodes for dye-sensitized solar cells

  • Articles
  • Special Issue In Honor of the 100th Birthday of Prof. Khi-Rui Tsai
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

MgO has not been explored as a counter electrode materials for dye-sensitized solar cells (DSSCs) due to its lack of electrical conductivity. However, herein, it is reported that MgO insulator with conductive poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) exhibited excellent performance as a counter electrode for DSSCs, leading to a high power conversion efficiency of 7.45%. Furthermore, it was revealed that the interface between MgO and PEDOT:PSS plays an important electro-catalytic role in the MgO/PEDOT composite counter electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goh C, McGehee MD. Organic semiconductors for low-cost solar cells. The Bridge, 2005, 34: 33–39

    Google Scholar 

  2. Hamann TW, Jensen RA, Martinson ABF, Ryswyk HV, Hupp JT. Advancing beyond current generation dye-sensitized solar cells. Energy Environ Sci, 2008, 1: 66–78

    Article  CAS  Google Scholar 

  3. O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740

    Article  Google Scholar 

  4. Wei W, Wang H, Hu YH. A review on PEDOT-based counter electrodes for dye-sensitized solar cells. Int J Energy Res, 2014, 38: 1099–1111

    Article  CAS  Google Scholar 

  5. Xia JB, Masaki N, Jiang KJ, Yanagida S. The influence of doping ions on poly(3,4-ethylenedioxythiophene) as a counter electrode of a dye-sensitized solar cell. J Mater Chem, 2007, 17: 2845–2850

    Article  CAS  Google Scholar 

  6. Pringle JM, Armel V, Macfarlane DR. Electrodeposited PEDOT-onplastic cathodes for dye-sensitized solar cells. Chem Commun, 2010, 46: 5367–5369

    Article  CAS  Google Scholar 

  7. Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Vesso T, Cesar I, Liska P, Humphry-Baker R, Comte P, Pechy P, Grätzel M. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electroche Soc, 2006, 153: A2255–A2261

    Article  CAS  Google Scholar 

  8. Wang H, Sun K, Tao F, Stacchiola DJ, Hu YH. 3D Honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew Chem Int Ed, 2013, 52: 9210–9214

    Article  CAS  Google Scholar 

  9. Wang H, Hu YH. Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ Sci, 2012, 5: 8182–8188

    Article  CAS  Google Scholar 

  10. Wang H, Hu YH. Electrolyte-induced precipitation of graphene oxide in its aqueous solution. J Colloid Interface Sci, 2013, 391: 21–27

    Article  CAS  Google Scholar 

  11. Wu MX, Lin X, Wang TH, Qiu JS, Ma TL. Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes. Energy Environ Sci, 2011, 4: 2308–2315

    Article  CAS  Google Scholar 

  12. Wang MK, Anghel AM, Marsan B, Ha NLC, Pootrakulchote N, Zakeeruddin SM, Grätzel M. CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J Am Chem Soc, 2009, 131: 15976–15977

    Article  CAS  Google Scholar 

  13. Sun HC, Qin D, Huang SQ, Guo XZ, Li DM, Luo YH, Meng QB. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ Sci, 2011, 4: 2630–2637

    Article  CAS  Google Scholar 

  14. Xin XK, He M, Han W, Jung JH, Lin ZQ. Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. Angew Chem Int Ed, 2011, 50: 11739–11742

    Article  CAS  Google Scholar 

  15. Wu MX, Lin X, Hagfeldt A, Qiu JS, Ma TL. Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew Chem Int Ed, 2011, 50: 3520–3524

    Article  CAS  Google Scholar 

  16. Jang JS, Ham DJ, Ramasamy E, Lee J, Lee JS. Platinum-free tungsten carbides as an efficient counter electrode for dyesensitized solar cells. Chem Commun, 2010, 46: 8600–8602

    Article  CAS  Google Scholar 

  17. Ko AR, Oh JK, Lee YW, Han SB, Park KW. Characterizations of tungsten carbide as a non-Pt counter electrode in dye-sensitized solar cells. Mater Lett, 2011, 65: 2220–2223

    Article  CAS  Google Scholar 

  18. Dou YY, Li GR, Song J, Gao XP. Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells. Phys Chem Chem Phys, 2012, 14: 1339–1342

    Article  CAS  Google Scholar 

  19. Wei W, Wang H, Hu YH. Unusual particle-size-induced promoter-to-poison transition of ZrN in counter electrodes for dye-sensitized solar cells. J Mater Chem A, 2013, 1: 14350–14357

    Article  CAS  Google Scholar 

  20. Li GR, Wang F, Jiang QW, Gao XP, Shen PW. Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dyesensitized solar cell. Angew Chem Int Ed, 2010, 49: 3653–3656

    Article  CAS  Google Scholar 

  21. Zhang XY, Chen X, Dong SM, Liu ZH, Zhou XH, Yao JH, Pang SP, Xu HX, Zhang ZY, Li LF, Cui GL, Hierarchical micro/nanostructured titanium nitride spheres as a high-performance counter electrode for a dye-sensitized solar cell. J Mater Chem, 2012, 22: 6067–6071

    Article  CAS  Google Scholar 

  22. Yeh MH, Lin LY, Lee CP, Wei HY, Chen CY, Wu CG, Vittal R, Ho KC. A composite catalytic film of PEDOT:PSS/TiN-NPs on a flexible counter-electrode substrate for a dye-sensitized solar cell. J Mater Chem, 2011, 21: 19021–19029

    Article  CAS  Google Scholar 

  23. Wang H, Wei W, Hu YH. Efficient ZnO-based counter electrodes for dye-sensitized solar cells. J Mater Chem A, 2013, 1: 6622–6628

    Article  CAS  Google Scholar 

  24. Wang H, Wei W, Hu YH. NiO as an efficient counter electrode catalyst for dye-sensitized solar cells. Top Catal, 2014, 57: 607–611

    Article  CAS  Google Scholar 

  25. Hu YH, Ruckenstein E. Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. Adv Catal, 2004, 48: 297–345

    CAS  Google Scholar 

  26. Hu YH, Ruckenstein E. Binary MgO-based solid solution catalysts for methane conversion syngas. Catal Rev-Sci Eng, 2002, 44: 423–453

    Article  CAS  Google Scholar 

  27. Jeon KR, Lee SJ, Park CY, Lee HS, Shin SC. Energy band structure of the single crystalline MgO/n-Ge(001)heterojunction determined by X-ray photoelectron spectroscopy. Appl Phys Lett, 2010, 97: 111910

    Article  Google Scholar 

  28. Kay A, Grätzel M. Dye-sensitized core-shell nanocrystals: improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem Mater, 2002, 14: 2930–2935

    Article  CAS  Google Scholar 

  29. Taguchi T, Zhang XT, Sutanto I, Tokuhiro K, Rao TN, Watanabe H, Nakamori T, Uragami M, Fujishima A. Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film. Chem Commun, 2003, 19: 2480–2481

    Article  Google Scholar 

  30. Snaith HJ, Ducati C. SnO2-based dye-sensitized hybrid solar cells exhibiting near unity sbsorbed photon-to-electron conversion efficiency. Nano Lett, 2010, 10: 1259–1265

    Article  CAS  Google Scholar 

  31. Docampo P, Tiwana P, Sakai N, Miura H, Herz L, Murakami T. Unraveling the function of an MgO interlayer in both electrolyte and solid-state SnO2 based dye-sensitized solar cells. J Phys Chem C, 2012, 116: 22840–22846

    Article  CAS  Google Scholar 

  32. Green ANM, Palomares E, Haque SA, Kroon JM, Durrant JR. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. J Phys Chem B, 2005, 109: 12525–12533

    Article  CAS  Google Scholar 

  33. Mohanty SP, Bhargava P. Magnesia nanoparticles in liquid electrolyte for dye sensitized solar cells: an effective recombination suppressant? Electrochimica Acta, 2013, 90: 291–294

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  35. Hu YH, Ruckenstein E. Ab initio quantum chemical calculations for fullerene cages with large holes. J Chem Phys, 2003, 119: 10073–10080

    Article  CAS  Google Scholar 

  36. Hu YH, Ruckenstein E. Endohedral chemistry of C60-based fullerene cages. J Am Chem Soc, 2005, 127: 11277–11282

    Article  CAS  Google Scholar 

  37. Dinadayalane TC, Kaczmarek A, Lukaszewicz J, Lesczynski J. Chemisorption of hydrogen stoms on the sidewalls of armchair singlewalled carbon nanotubes. J Phys Chem C, 2007, 111: 7376–7383

    Article  CAS  Google Scholar 

  38. Gauden PA, Wisniewski M. CO2 sorption on substituted carbon materials: computational chemistry studies. Appl Surf Sci, 2007, 253: 5726–5731

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03. Revision D.01. Wallingford CT: Gaussian, Inc., 2004

    Google Scholar 

  40. Gong F, Wang H, Xu X, Zhou G, Wang ZS. In situ growth of Co085Se and Ni085Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J Am Chem Soc, 2012, 134: 10953–10958

    Article  CAS  Google Scholar 

  41. Sakurai S, Jiang HQ, Takahashi M, Kobayashi K. Enhanced performance of a dye-sensitized solar cell with a modified poly(3,4-ethylenedioxythiophene)/TiO2/FTO counter electrode. Electrochimica Acta, 2009, 54: 5463–5469

    Article  CAS  Google Scholar 

  42. Han LY, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A, Yamanaka R. Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance. Appl Phys Lett, 2005, 86: 213501

    Article  Google Scholar 

  43. Joshi P, Zhang LF, Chen QL, Galipeau D, Fong H, Qiao Q. Electrospun Carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl Mater Inter, 2010, 2: 3572–3577

    Article  CAS  Google Scholar 

  44. Koh JK, Kim J, Kim B, Kim JH, Kim E. Highly efficient, iodine-free dye-sensitized solar cells with solid-state synthesis of conducting polymers. Adv Mater, 2011, 23: 1641–1646

    Article  CAS  Google Scholar 

  45. Hauch A, Georg A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta, 2001, 46: 3457–3466

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhang Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Hu, Y. Electro-catalytic role of insulator/conductor interface in MgO/PEDOT composite electrodes for dye-sensitized solar cells. Sci. China Chem. 58, 101–106 (2015). https://doi.org/10.1007/s11426-014-5210-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5210-z

Keywords

Navigation