Skip to main content
Log in

NiO as an Efficient Counter Electrode Catalyst for Dye-Sensitized Solar Cells

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

NiO is an important heterogeneous catalyst employed in chemical processes. However, it is a new topic to explore NiO as a counter electrode catalyst for dye-sensitized solar cells (DSSCs). In this paper, NiO with poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) was demonstrated an efficient DSSC counter electrode with a maximum power conversion efficiency of 7.58 %. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry measurements revealed that the excellent photovoltaic performance is due to the combination between the high catalytic activity of NiO and the superior electrical conductivity of PEDOT:PSS. The optimum weight ratio of NiO to PEDOT:PSS is 48.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grätzel M (2003) J Photochem Photobiol C 4:145

    Article  Google Scholar 

  2. Law M, Greene LE, Johnson JC, Saykally R, Yang PD (2005) Nat Mater 4:455

    Article  CAS  Google Scholar 

  3. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595

    Article  CAS  Google Scholar 

  4. Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin K, Diau EWG, Yeh CY, Zakeeruddin SM, Grätzel M (2011) Science 334:629

    Article  CAS  Google Scholar 

  5. Bach U, Lupo D, Comte P, Moser JE, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M (1998) Nature 395:583

    Article  CAS  Google Scholar 

  6. Mende LS, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Grätzel M (2005) Adv Mater 17:813

    Article  Google Scholar 

  7. Wang H, Hu YH (2012) Energy Environ Sci 5:8182

    Article  CAS  Google Scholar 

  8. Wang H, Wei W, Hu YH (2013) J Mater Chem A 1:6622

    Article  CAS  Google Scholar 

  9. Li GR, Wang F, Jiang QW, Gao XP, Shen PW (2010) Angew Chem Inter Ed 49:3653

    Article  CAS  Google Scholar 

  10. Han J, Kim H, Kim DY, Jo SM, Jang SY (2010) ACS Nano 4:3503

    Article  CAS  Google Scholar 

  11. Chen L, Tanb W, Zhang J, Zhou X, Zhang X, Lin Y (2010) Electrochim Acta 55:3721

    Article  CAS  Google Scholar 

  12. Hu YH, Ruckenstein E (2004) Adv Catal 48:297

    CAS  Google Scholar 

  13. Hu YH, Ruckenstein E (1998) J Phys Chem A 102:10568

    Google Scholar 

  14. Hu YH, Ruckenstein E (2002) Catal Rev 44:423

    Article  CAS  Google Scholar 

  15. Hu YH, Ruckenstein E (1998) J Phys Chem B 102:230

    Google Scholar 

  16. He JJ, Lindström H, Hagfeldt A, Lindquist SE (1999) J Phys Chem B 103:8940

    Article  CAS  Google Scholar 

  17. Li L, Gibson AE, Qin P, Boschloo G, Gorlov M, Hagfeldt A, Sun L (2010) Adv Mater 22:1759

    Article  CAS  Google Scholar 

  18. Nattestad A, Ferguson M, Kerr R, Cheng YB, Bach U (2008) Nanotechnology 19:295304

    Article  Google Scholar 

  19. Gibson AE, Smeigh LA, Pleux LL, Fortage J, Boschloo G, Blart E, Pellegrin Y, Odobel F, Hagfeldt A, Hammarström L (2009) Angew Chem Int Ed 48:4402

    Article  CAS  Google Scholar 

  20. Bandara J, Weerasinghe H (2005) Solar Energy Mater Solar Cells 85:385

    Article  CAS  Google Scholar 

  21. Guai GH, Leiw MY, Ng CM, Li CM (2012) Adv Energy Mater 2:334

    Article  CAS  Google Scholar 

  22. Bajpai R, Roy S, Koratkar N, Misra DS (2013) Carbon 56:56

    Article  CAS  Google Scholar 

  23. Okumura T, Sugiyo T, Inoue T, Ikegami M, Miyasaka T (2013) J Electrochem Soc 160:H155

    Article  CAS  Google Scholar 

  24. Gong F, Wang H, Xu X, Zhou G, Wang ZS (2012) J Am Chem Soc 134:10953

    Article  CAS  Google Scholar 

  25. Yeh MH, Lin LY, Lee CP, Wei HY, Chen CY, Wu CG, Vittal R, Ho KC (2011) J Mater Chem 21:19021

    Article  CAS  Google Scholar 

  26. Li GR, Wang F, Song J, Xiong FY, Gao XP (2012) Electrochim Acta 65:216

    Article  CAS  Google Scholar 

  27. Sakurai S, Jiang HQ, Takahashi M, Kobayashi K (2009) Electrochim Acta 54:5463

    Article  CAS  Google Scholar 

  28. Han LY, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A, Yamanaka R (2005) Appl Phys Lett 86:213501

    Article  Google Scholar 

  29. Joshi P, Zhang LF, Chen QL, Galipeau D, Fong H, Qiao Q (2010) ACS Appl Mater Interfaces 2:3572

    Article  CAS  Google Scholar 

  30. Koh JK, Kim J, Kim B, Kim JH, Kim E (2011) Adv Mater 23:1641

    Article  CAS  Google Scholar 

  31. Xia JB, Chen L, Yanagida SJ (2011) Mater Chem 21:4644

    Article  CAS  Google Scholar 

  32. Hauch A, Georg A (2001) Electrochim Acta 46:3457

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. National Science Foundation (NSF-CBET-0931587) and the ACS Petroleum Research Fund (PRF-51799-ND10). Hu also thanks Charles and Carroll McArthur for their great support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Hang Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Wei, W. & Hu, Y.H. NiO as an Efficient Counter Electrode Catalyst for Dye-Sensitized Solar Cells. Top Catal 57, 607–611 (2014). https://doi.org/10.1007/s11244-013-0218-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0218-8

Keywords

Navigation