Skip to main content
Log in

Highly selective and stable hydrogenation of heavy aromatic-naphthalene over transition metal phosphides

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The present study reports a highly selective and stable catalytic approach for producing tetralin, an important chemical, solvent, and H2 storage material. Transition metal phosphides (MoP, Ni2P, Co2P, and Fe2P) were prepared by wet impregnation and temperature-programmed reduction and characterized by x-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), EDX mapping, scanning electron microscopy (SEM), transmission electron microscopy (TEM), brunauer-emmett-teller (BET), temperature-programmed desorption of ammonia (NH3-TPD), and fourier transform infrared spectroscopy of pyridine (pyridine-FTIR). Of all the transition metal phosphides MoP was formed at a lower reduction temperature, which resulted in smaller particle size that enhanced the overall surface area of the catalyst. The existence of weak, moderate, and Lewis acidic sites over MoP were responsible for its high tetralin selectivity (90%) and stability during the 100 h reaction on-stream in a fixed-bed reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li C and Suzuki K. Resources, properties and utilization of tar. Resour Conserv Recy 2010, 54: 905–915

    Article  Google Scholar 

  2. Blum P, Sagner A, Tiehm A, Martus P, Wendel T and Grathwohl P. Importance of heterocylic aromatic compounds in monitored natural attenuation for coal tar contaminated aquifers: a review. J Contam Hydrol, 2011, 126: 181–194

    Article  CAS  Google Scholar 

  3. Wang Y, Shah N, Huggins FE and Huffman GP. Hydrogen production by catalytic dehydrogenation of Ttetralin and decalin over stacked cone carbon nanotube-supported Ptcatalysts. Energ Fuel, 2006, 20: 2612–2615

    Article  CAS  Google Scholar 

  4. Kan T, Sun X, Wang H, Li C and Muhammad U. Production of gasoline and diesel from coal tar via its catalytic hydrogenation in serial fixed beds. Energ Fuel, 2012, 26: 3604–3611

    Article  CAS  Google Scholar 

  5. Wang H, Cao Y, Li D, Muhammad U, Li C, Li Z and Zhang S. Catalytic hydrorefining of tar to liquid fuel over multi-metals (W-Mo-Ni) catalysts. Renew Sus Energy, 2013, 5: 53114

    Article  Google Scholar 

  6. Du H, Fairbridge C, Yang H and Ring Z. The chemistry of selective ring-opening catalysts. Appl Catal A-Gen, 2005, 294: 1–21

    Article  CAS  Google Scholar 

  7. McVicker GB, Daage M, Touvelle MS, Hudson CW, Klein DP, Baird Jr WC, Cook BR, Chen JG, Hantzer S, Vaughan DEW, Ellis ES and Feeley OC. Selective Ring Opening of Naphthenic Molecules. J Catal, 2002, 210: 137–148

    Article  CAS  Google Scholar 

  8. Roessner F and Roland U. Hydrogen spillover in bifunctional catalysis. Chemical J Mol Catal A-Chem, 1996, 112: 401–412

    Article  CAS  Google Scholar 

  9. Sato K, Iwata Y, Yoneda T, Nishijima A, Miki Y and Shimada H. Hydrocracking of diphenylmethane and tetralin over bifunctional NiW sulfide catalysts supported on three kinds of zeolites. Catal Today, 1998, 45: 367–374

    Article  CAS  Google Scholar 

  10. Eliche-Quesada D, Mérida-Robles J, Maireles-Torres P, Rodrıguez-Castellón E and Jiménez-López A. Superficial characterization and hydroconversion of tetralin over NiW sulfide catalysts supported on zirconium doped mesoporous silica. Appl Catal A-Gen, 2004, 262: 111–120

    Article  CAS  Google Scholar 

  11. Jacquin M, Jones DJ, Rozière J, López AJ, Rodríguez-Castellón E, Trejo Menayo JM, Lenarda M, Storaro L, Vaccari A and Albertazzi S. Cetane improvement of diesel with a novel bimetallic catalyst. J Catal, 2004, 228: 447–459

    Article  CAS  Google Scholar 

  12. Santikunaporn M, Herrera JE, Jongpatiwut S, Resasco DE, Alvarez WE and Sughrue EL. Ring opening of decalin and tetralin on HY and Pt/HY zeolite catalysts. J Catal, 2004, 228: 100–113

    Article  CAS  Google Scholar 

  13. Li C, Hirabayashi D and Suzuki K. A crucial role of O2 and O2 2− on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14-O33. Appl Catal B-Environ, 2009, 88: 351–360

    Article  CAS  Google Scholar 

  14. Lin SD and Song C. Noble metal catalysts for low-temperature naphthalene hydrogenation in the presence of benzothiophene. Catal Today, 1996, 31: 93–104

    Article  CAS  Google Scholar 

  15. Lu C-M, Lin Y-M and Wang I. Naphthalene hydrogenation over Pt/TiO2-ZrO2 and the behavior of strong metal-support interaction (SMSI). Appl Catal A-Gen, 2000, 198: 223–234

    Article  CAS  Google Scholar 

  16. Mandreoli M, Vaccari A, Veggetti E, Jacquin M, Jones DJ and Roziere J. Vapour phase hydrogenation of naphthalene on a novel Ni-containing mesoporous aluminosilicate catalyst. Appl Catal A-Gen, 2002, 231: 263–268

    Article  CAS  Google Scholar 

  17. Jacquin M, Jones DJ, Rozière J, Albertazzi S, Vaccari A, Lenarda M, Storaro L and Ganzerla R. Novel supported Rh, Pt, Ir and Ru mesoporous aluminosilicates as catalysts for the hydrogenation of naphthalene. Appl Catal A-Gen, 2003, 251: 131–141

    Article  CAS  Google Scholar 

  18. Albertazzi S, Busca G, Finocchio E, Glöckler R and Vaccari A. New Pd/Pt on Mg/Al basic mixed oxides for the hydrogenation and hydrogenolysis of naphthalene. J Catal, 2004, 223: 372–381

    Article  CAS  Google Scholar 

  19. Shirai M, Rode CV, Mine E, Sasaki A, Sato O and Hiyoshi N. Ring hydrogenation of naphthalene and 1-naphthol over supported metal catalysts in supercritical carbon dioxide solvent. Catal Today, 2006, 115: 248–253

    Article  CAS  Google Scholar 

  20. Monteiro-Gezork ACA, Natividad R and Winterbottom JM. Hydrogenation of naphthalene on NiMo- Ni- and Ru/Al2O3 catalysts: Langmuir-Hinshelwood kinetic modelling. Catal Today, 2008, 130: 471–485

    Article  CAS  Google Scholar 

  21. Romero CMC, Thybaut JW and Marin GB. Naphthalene hydrogenation over a NiMo/γ-Al2O3 catalyst: experimental study and kinetic modelling. Catal Today, 2008, 130: 231–242

    Article  CAS  Google Scholar 

  22. Chen H, Yang H, Omotoso O, Ding L, Briker Y, Zheng Y and Ring Z. Contribution of hydrogen spillover to the hydrogenation of naphthalene over diluted Pt/RHO catalysts. Appl Catal A-Gen, 2009, 358: 103–109

    Article  CAS  Google Scholar 

  23. Ren S, Zhang P, Shui H, Lei Z, Wang Z and Kang S. Promotion of Ni/SBA-15 catalyst for hydrogenation of naphthalene by pretreatment with ammonia/water vapour. Catal Commun, 2010, 12: 132–136

    Article  CAS  Google Scholar 

  24. Ardakani SJ and Smith KJ. A comparative study of ring opening of naphthalene, tetralin and decalin over Mo2C/HY and Pd/HY catalysts. Appl Catal A-Gen, 2011, 403: 36–47

    CAS  Google Scholar 

  25. Grzechowiak JR, Masalska A, Jaroszewska K and Sadowska K. Hydroconversion of 1-methylnaphthalene over Pt/SBA-15 catalysts: effect of SBA-15 chemical composition and method of binder incorporation. Catal Today, 2011, 176: 149–153

    Article  CAS  Google Scholar 

  26. Liu X, Ardakani SJ and Smith KJ. The effect of Mg and K addition to a Mo2C/HY catalyst for the hydrogenation and ring opening of naphthalene. Catal Commun, 2011, 12: 454–458

    Article  CAS  Google Scholar 

  27. Chen S, Chen J, Gieleciak R and Fairbridge C. Reactivity characteristics of Pt-encapsulated zeolite catalysts for hydrogenation and hydrodesulfurization. Appl Catal A-Gen, 2012, 415–416: 70–79

    Article  Google Scholar 

  28. Pang M, Liu C, Xia W, Muhler M and Liang C. Activated carbon supported molybdenum carbides as cheap and highly efficient catalyst in the selective hydrogenation of naphthalene to tetralin. Green Chem, 2012, 14: 1272–1276

    Article  CAS  Google Scholar 

  29. Yong-Su Kim, Gwang-Nam Yun and Lee Y-K. Novel Ni2P/zeolite catalysts for naphthalene hydrocracking to BTX. Catal Commun, 2014, 45: 133–138

    Article  CAS  Google Scholar 

  30. Oyama ST, Wang X, Lee YK, Bando K and Requejo FG. Effect of Phosphorus Content in Nickel Phosphide Catalysts Studied by XAFS and Other Techniques. J Catal, 2002, 210: 207–217

    Article  CAS  Google Scholar 

  31. Li D, Bui P, Zhao HY, Oyama ST, Dou T and Shen ZH. Rake mechanism for the deoxygenation of ethanol over a supported Ni2P/SiO2 catalyst. J Catal, 2012, 290: 1–12

    Article  CAS  Google Scholar 

  32. Zuzaniuk V and Prins R. Synthesis and characterization of silica-supported transition-metal phosphides as HDN catalysts. J Catal, 2003, 219: 85–96

    Article  CAS  Google Scholar 

  33. Volckmar CE, Bron M, Bentrup U, Martin A and Claus P. Influence of the support composition on the hydrogenation of acrolein over Ag/SiO2-Al2O3 catalysts. J Catal, 2009, 261: 1–8

    Article  CAS  Google Scholar 

  34. Kalevaru VN, Benhmid A, Radnik J, Pohl MM, Bentrup U and Martin A. Marked influence of support on the catalytic performance of PdSb acetoxylation catalysts: Effects of Pd particle size, valence states, and acidity characteristics. J Catal, 2007, 246: 399–412

    Article  CAS  Google Scholar 

  35. Oyama ST and Lee Y-K. The active site of nickel phosphide catalysts for the hydrodesulfurization of 4,6-DMDBT. J Catal, 2008, 258: 393–400

    Article  CAS  Google Scholar 

  36. Zhao HY, Li D, Bui P and Oyama ST. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Appl Catal A-Gen, 2011, 391: 305–310

    Article  CAS  Google Scholar 

  37. Wang G, Liu Q, Su W, Li X, Jiang Z, Fang X, Han C and Li C. Hydroisomerization activity and selectivity of n-dodecane over modified Pt/ZSM-22 catalysts. Appl Catal A-Gen, 2008, 335: 20–27

    Article  CAS  Google Scholar 

  38. Wang J, Chen H and Li Q. Influence of the Brönsted and Lewis Acid Sites in Platinum/Solid Acid Catalysts on the Hydrogenation of Benzene and Toluene. React Kinet Catal L, 2000, 69: 277–284

    Article  CAS  Google Scholar 

  39. Duan A, Wan G, Zhang Y, Zhao Z, Jiang G and Liu J. Optimal synthesis of micro/mesoporous beta zeolite from kaolin clay and catalytic performance for hydrodesulfurization of diesel. Catal Today, 2011, 175: 485–493

    Article  CAS  Google Scholar 

  40. Lin SD and Vannice MA. Hydrogenation of aromatic hydrocarbons over supported Pt catalysts. III. reaction models for metal surfaces and acidic sites on oxide supports. J Catal, 1993, 143: 563–572

    Article  CAS  Google Scholar 

  41. Kitamura Bando K, Soga K, Kunimori K and Arakawa H. Effect of Li additive on CO2 hydrogenation reactivity of zeolite supported Rh catalysts. Appl Catal A-Gen, 1998, 175: 67–81

    Article  CAS  Google Scholar 

  42. Razzaq R, Zhu H, Jiang L, Muhammad U, Li C and Zhang S. Catalytic Methanation of CO and CO2 in Coke Oven Gas over Ni-Co/ZrO2-CeO2. Ind Eng Chem Res, 2013, 52: 2247–2256

    Article  CAS  Google Scholar 

  43. Yaseen M, Shakirullah M, Ahmad I, Rahman AU, Rahman FU, Usman M and Razzaq R. Simultaneous operation of dibenzothiophene hydrodesulfurization and methanol reforming reactions over Pd promoted alumina based catalysts. Fuel Chem Tech, 2012, 40: 714–720

    Article  CAS  Google Scholar 

  44. Oyama ST, Zhang X, Lu J, Gu Y and Fujitani T. Epoxidation of propylene with H2 and O2 in the explosive regime in a packed-bed catalytic membrane reactor. J Catal, 2008, 257: 1–4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ChunShan Li or SuoJiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, M., Li, D., Li, C. et al. Highly selective and stable hydrogenation of heavy aromatic-naphthalene over transition metal phosphides. Sci. China Chem. 58, 738–746 (2015). https://doi.org/10.1007/s11426-014-5199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5199-3

Keywords

Navigation