Skip to main content
Log in

Effective polarization energy of the naphthalene molecular crystal: a study on the polarizable force field

  • Articles
  • Special Issue Quantum Chemistry for Extended Systems—In honor of Prof. J.M. André for his 70th birthday
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

polarization energy of the localized charge in organic solids consists of electronic polarization energy, permanent electrostatic interactions, and inter/intra molecular relaxation energies. The effective electronic polarization energies for an electron/hole carrier were successfully estimated by AMOEBA polarizable force field in naphthalene molecular crystals. Both electronic polarization energy and permanent electrostatic interaction were in agreement with the preview experimental values. In addition, the influence of the multipoles from different distributed mutipole analysis (DMA) fitting options on the electrostatic interactions are discussed in this paper. We found that the multipoles obtained from Gauss-Hermite quadrature without diffuse function or grid-based quadrature with 0.325 Å H atomic radius will give reasonable electronic polarization energies and permanent interactions for electron and hole carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bredas JL, Beljonne D, Coropceanu V, Cornil J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev, 2004, 104: 4971–5004

    Article  CAS  Google Scholar 

  2. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Bredas JL. Charge transport in organic semiconductors. Chem Rev, 2007, 107: 926–952

    Article  CAS  Google Scholar 

  3. Kwiatkowski JJ, Nelson J, Li H, Bredas JL, Wenzel W, Lennartz C. Simulating charge transport in tris(8-hydroxyquinoline) aluminium (Alq3). Phys Chem Chem Phys, 2008, 10: 1852–1858

    Article  CAS  Google Scholar 

  4. Baumeier B, May F, Lennartz C, Andrienko D. Challenges for in silico design of organic semiconductors. J Mater Chem, 2012, 22: 10971–10976

    Article  CAS  Google Scholar 

  5. Cornil J, Verlaak S, Martinelli N, Mityashin A, Olivier Y, Van Regemorter T, D’Avino G, Muccioli L, Zannoni C, Castet F, Beljonne D, Heremans P. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale. Acc Chem Res, 2012, 46: 434–443

    Article  Google Scholar 

  6. Lyons LE. Ionized states of molecular crystals. Aust J Chem, 1957, 10: 365–367

    Article  CAS  Google Scholar 

  7. Lyons LE. Photo- and semi-conductance in organic crystals. Part V. Ionized states in molecular crystals. J Chem Soc, 1957, 0: 5001–5007

    Article  CAS  Google Scholar 

  8. Sato N, Inokuchi H, Silinsh EA. Reevaluation of electronic polarization energies in organnic molecular crystals. Chem Phys, 1987, 115: 269–277

    Article  CAS  Google Scholar 

  9. Bounds PJ, Munn RW. Polarization energy of a localized charge in a molecular crystal. II. Charge-quadrupole energy. Chem Phys, 1981, 59: 41–45

    Article  CAS  Google Scholar 

  10. Silinsh EA, Jurgis AJ. Photogenerated geminate charge-pair separation mechanisms in pentacene crystals. Chem Phys, 1985, 94: 77–90

    Article  CAS  Google Scholar 

  11. Sebastian L, Weiser G. Charge-transfer transitions in crystalline anthracene and their role in photoconductivity. Chem Phys, 1983, 75: 103–114

    Article  CAS  Google Scholar 

  12. Sebastian L, Weiser G. Charge transfer transitions in solid tetracene and pentacene studied by electroabsorption. Chem Phys, 1981, 1981: 125–135

    Article  Google Scholar 

  13. Bounds PJ, Munn RW. Polarization energy of a localized charge in a molecular crystal. Chem Phys, 1979, 44: 103–112

    Article  CAS  Google Scholar 

  14. Eisenstein I, Munn RW. Polarization energy of a localized charge in a molecular crystal. V. Effect of vacancies. Chem Phys, 1983, 77: 47–61

    Article  CAS  Google Scholar 

  15. Silinsh EA, Čápek V, Nedbal L. Quantum corrections to polarization energy in linear acene series. Physica Status Solidi B, 1980, 102: 149–152

    Article  Google Scholar 

  16. Soos ZG, Tsiper EV, Pascal Jr RA. Charge redistribution and electronic polarization in organic molecular crystals. Chem Phys Lett, 2001, 342: 652–658

    Article  CAS  Google Scholar 

  17. Tsiper EV, Soos ZG. Charge redistribution and polarization energy of organic molecular crystals. PhysRev B, 2001, 64: 195124

    Google Scholar 

  18. Ren P, Ponder JW. Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations. J Comput Chem, 2002, 23: 1497–1506

    Article  CAS  Google Scholar 

  19. Ren P, Ponder JW. Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B, 2003, 107: 5933–5947

    Article  CAS  Google Scholar 

  20. Ponder JW, Wu C, Ren P, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL, Lambrecht DS, DiStasio RA, Head-Gordon M, Clark GNI, Johnson ME, Head-Gordon T. Current status of the AMOEBA polarizable force field. J Phys Chem B, 2010, 114: 2549–2564

    Article  CAS  Google Scholar 

  21. Ren P, Wu C, Ponder JW. Polarizable atomic multipole-based molecular mechanics for organic molecules. J Chem Theory Comput, 2011, 7: 3143–3161

    Article  CAS  Google Scholar 

  22. Norton JE, Brédas JL. Polarization energies in oligoacene semiconductor crystals. J Am Chem Soc, 2008, 130: 12377–12384

    Article  CAS  Google Scholar 

  23. Ryno SM, Lee SR, Sears JS, Risko C, Bredas JL. Electronic polarization effects upon charge injection in oligoacene molecular crystals: description via a polarizable force field. J Phys Chem C, 2013, 117: 13853–13860

    Article  CAS  Google Scholar 

  24. Fuchs A, Steinbrecher T, Mommer MS, Nagata Y, Elstner M, Lennartz C. Molecular origin of differences in hole and electron mobility in amorphous Alq3-a multiscale simulation study. Phys Chem Chem Phys, 2012, 14: 4259–4270

    Article  CAS  Google Scholar 

  25. Stone AJ. Distributed multipole ananlysis, or how to describe a molecular charge distribution. Chem Phys Lett, 1981, 83: 233–239

    Article  CAS  Google Scholar 

  26. Stone AJ. The Theory of Intermolecular Forces. Oxford: Oxford University Press, 2013

    Book  Google Scholar 

  27. Stone AJ. Distributed multipole analysis of gaussian wavefunctions. Version 2.2.09. http://www-stone.ch.cam.ac.uk/documentation/gdma/manual.pdf.

  28. Stone AJ. Distributed multipole analysis: stability for large basis sets. J Chem Theory Comput, 2005, 1: 1128–1132

    Article  CAS  Google Scholar 

  29. Thole BT. Molecular polarizabilities calculated with a modified dipole interaction. Chem Phys, 1981, 59: 341–350

    Article  CAS  Google Scholar 

  30. van Duijnen PT, Swart M. Molecular and atomic polarizabilities: thole’s model revisited. J Phys Chem A, 1998, 102: 2399–2407

    Article  Google Scholar 

  31. Ponder JW. Tinker: software tools for molecular design, version 6.0. St. Louis, MO: Washington University, 2011

    Google Scholar 

  32. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem, 2006, 2006: 1787–1799

    Article  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Revision C.01. Wallingford CT: Gaussian, Inc., 2009

    Google Scholar 

  34. Brock CP, Dunitz JD. Temperature dependence of thermal motion in crystalline naphthalene. Acta Cryst B, 1982, B38: 2218–2228

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiWei Yin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Yin, S. Effective polarization energy of the naphthalene molecular crystal: a study on the polarizable force field. Sci. China Chem. 57, 1375–1382 (2014). https://doi.org/10.1007/s11426-014-5182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5182-z

Keywords

Navigation