Skip to main content
Log in

Highly active porous nickel-film electrode via polystyrene microsphere template-assisted composite electrodeposition for hydrogen-evolution reaction in alkaline medium

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A highly porous nickel-film electrode with satisfactory mechanical strength was prepared by a facile vertical template-assisted composite electrodeposition method using polystyrene (PS) microspheres templates, with the aim of improving the electrocatalytic activity for the hydrogen-evolution reaction (HER). During the composite electrodeposition process, the hydrophobic PS microspheres were highly dispersed in the electrolyte with the help of a surfactant, and then co-deposited with Ni to form the film electrode. After removing the PS templates by annealing, a porous Ni film containing large amount of uniformly dispersed pores with narrow size distribution was obtained, and then applied as the electrode for the HER in an alkaline medium. As evidenced by the electrochemical analysis, the porous Ni film electrode exhibits higher catalytic activity as compared to a dense Ni film electrode and is superior to a Ni/RuO2/CeO2 commercial electrode. The effect of temperature on the catalytic properties of the porous Ni film electrode was also investigated; the activation energy was calculated as 17.26 kJ/mol. The enhanced activity toward the HER was attributed to the improved electrochemical surface area and mass transportation facilitated by the high porosity of the synthesized Ni film electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinfeld A. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrogen Energy, 2002, 27: 611–619

    Article  CAS  Google Scholar 

  2. Bockris JOM, Veziroglu TN. Estimates of the price of hydrogen as a medium for wind and solar sources. Int J Hydrogen Energy, 2007, 32: 1605–1610

    Article  CAS  Google Scholar 

  3. Ma C, Sheng J, Brandon N, Zhang C, Li G. Preparation of tungsten carbide-supported nano platinum catalyst and its electrocatalytic activity for hydrogen evolution. Int J Hydrogen Energy, 2007, 32: 2824–2829

    Article  CAS  Google Scholar 

  4. Solmaz R, Kardas G. Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis. Electrochim Acta, 2009, 54: 3726–3734

    Article  CAS  Google Scholar 

  5. Turner JA. Sustainable hydrogen production. Science, 2004, 305: 972–974

    Article  CAS  Google Scholar 

  6. Kotay SM, Das D. Biohydrogen as a renewable energy resource-Prospects and potentials. Int J Hydrogen Energy, 2008, 33: 258–263

    Article  Google Scholar 

  7. Zeng K, Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energ Combust, 2010, 36: 307–326

    Article  CAS  Google Scholar 

  8. Ketpang K, Kim MS, Kim SH, Shanmugam S. High performance catalyst for electrochemical hydrogen evolution reaction based on SiO2/WO3−x nanofacets. Int J Hydrogen Energy, 2013, 38: 9732–9740

    Article  CAS  Google Scholar 

  9. Sheng WC, Gasteiger HA, Horn YS. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J Electrochem Soc, 2010, 157: B1529–B1536

    Article  CAS  Google Scholar 

  10. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc, 2011, 133: 7296–7299

    Article  CAS  Google Scholar 

  11. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Norskov JK. Alloys of platinum and early transition metals as oxygen reduction electro-catalysts. Nat Chem, 2009, 1: 552–556

    Article  CAS  Google Scholar 

  12. Paunovic P, Popovski O, Fidancevska E, Ranguelov B, Gogovska DS, Dimitrov AT, Jordanov SH. Co-magneli phases electrocatalysts for hydrogen/oxygen evolution. Int J Hydrogen Energy, 2010, 35: 10073–10080

    Article  CAS  Google Scholar 

  13. Kreysa G, Hakansson B. Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solution. J Electroanal Chem Interf Electrochem, 1986, 201: 61–83

    Article  CAS  Google Scholar 

  14. Wei ZD, Yan AZ, Feng YC, Li L, Sun CX, Shao ZG, Shen PK. Study of hydrogen evolution reaction on Ni-P amorphous alloy in the light of experimental and quantum chemistry. Electrochem Commun, 2007, 9: 2709–2715

    Article  CAS  Google Scholar 

  15. Lu PWT, Srinivasan S. Advances in water electrolysis technology with emphasis on use of the solid polymer electrolyte. J Appl Electrochem, 1979, 9: 269–283

    Article  CAS  Google Scholar 

  16. Xie ZW, He P, Du LC, Dong FQ, Dai K, Zhang TH. Comparison of four nickel-based electrodes for hydrogen evolution reaction. Electrochim Acta, 2013, 88: 390–394

    Article  CAS  Google Scholar 

  17. Gennero de Chialvo MR, Chialvo AC. Hydrogen evolution reaction on a smooth iron electrode in alkaline solution at different temperatures. Phys Chem Chem Phys, 2001, 3: 3180–3184

    Article  CAS  Google Scholar 

  18. Fan W, Lai Q, Zhang Q, Wang Y. Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J Phys Chem C, 2011, 115: 10694–10701

    Article  CAS  Google Scholar 

  19. Blouin M, Guay D. Activation of ruthenium oxide, iridium oxide, and mixed RuxIr1−x oxide electrodes during cathodic polarization and hydrogen evolution. J Electrochem Soc, 1997, 144: 573–581

    Article  CAS  Google Scholar 

  20. Lacnjevac UC, Jovic BM, Jovic VD, Krstajic NV. Determination of kinetic parameters for the hydrogen evolution reaction on the electrodeposited Ni-MoO2 composite coating in alkaline solution. J Electroanal Chem, 2012, 677–680: 31–40

    Article  Google Scholar 

  21. Jayalakshmi M, Puspitasari I, Jung K, Joo O. Effect of different substrates on the electrochemical behavior of Ni-Mo-Fe-Co-S composite film in alkali solutions. Int J Electrochem Sci, 2008, 3: 787–796

    CAS  Google Scholar 

  22. Farzaneh MA, Zamanzad-Ghavidel MR, Raeissi K, Golozar MA, Saatchi A, Kabi S. Effects of Co and W alloying elements on the electrodeposition aspects and properties of nanocrystalline Ni alloy coatings. Appl Surf Sci, 2011, 257: 5919–5926

    Article  CAS  Google Scholar 

  23. Shervedani RK, Madram AR. Kinetics of hydrogen evolution reaction on nanocrystalline electrodeposited Ni62Fe35C3 cathode in alkaline solution by electrochemical impedance spectroscopy. Electrochim Acta, 2007, 53: 426–433

    Article  CAS  Google Scholar 

  24. Paseka I. Hydrogen evolution reaction on Ni-P alloys: the internal stress and the activities of electrodes. Electrochim Acta, 2008, 53: 4537–4543

    Article  CAS  Google Scholar 

  25. Herraiz-Cardona I, Ortega E, Anton JG, Perez-Herranz V. Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits. Int J Hydrogen Energy, 2011, 36: 9428–9438

    Article  CAS  Google Scholar 

  26. Birry L, Lasia A. Studies of the hydrogen evolution reaction on raney Nickel-Molybdenum electrodes. J Appl Electrochem, 2004, 34: 735–749

    Article  CAS  Google Scholar 

  27. Dong HX, Lei T, He YH, Xu NP, Huang BY, Liu CT. Electrochemical performance of porous Ni3Al electrodes for hydrogen evolution reaction. Int J Hydrogen Energy, 2011, 36: 12112–12120

    Article  CAS  Google Scholar 

  28. Martıínez WM, Fernández AM, Cano U, Sandoval A. Synthesis of nickel-based skeletal catalyst for an alkaline electrolyzer. Int J Hydrogen Energy, 2010, 35: 8457–8462

    Article  Google Scholar 

  29. Hitz C, Lasia A. Experimental study and modeling of impedance of the her on porous Ni electrodes. J Electroanal Chem, 2001, 500: 213–222

    Article  CAS  Google Scholar 

  30. Jaron A, Zurek Z. New porous Fe64/Ni36 and Ni70/Cu30 electrodes for hydrogen evolution—Production and properties. Solid State Ion, 2010, 181: 976–981

    Article  CAS  Google Scholar 

  31. Herraiz-Cardona I, Ortega E, Vázquez-Gòmez L, Pérez-Herranz V. Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction. Int J Hydrogen Energy, 2012, 37: 2147–2156

    Article  CAS  Google Scholar 

  32. Huang YJ, Lai CH, Wu PW, Chen LY. Ni inverse opals for water electrolysis in an alkaline electrolyte. J Electrochem Soc, 2010, 157: 18–22

    Article  Google Scholar 

  33. Marozzi CA, Chialvo AC. Development of electrode morphologies of interest in electrocatalysis. Part 1: electrodeposited porous nickel electrodes. Electrochim Acta, 2000, 45: 2111–2120

    Article  CAS  Google Scholar 

  34. Zein El Abedin S, Prowald A, Endres F. Fabrication of highly ordered macroporous copper films using template-assisted electrodeposition in an ionic liquid. Electrochem Commun, 2012, 18: 70–73

    Article  CAS  Google Scholar 

  35. Hazen KC, Hazen BW. A polystyrene microsphere assay for detecting surface hydrophobicity variations within Candida albicans populations. J Microbiol Meth, 1987, 6: 289–299

    Article  CAS  Google Scholar 

  36. Shouldice GTD, Vandezande GA, Rudin A. Practical aspects of the emulsifier-free emulsion polymerization of styrene. Eur Ploym J, 1994, 30: 179–183

    Article  CAS  Google Scholar 

  37. EI-Sherik AM, Erb U. Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition. J Mater Sci, 1995, 30: 5743–5749

    Article  Google Scholar 

  38. Liu H, Wang F, Zhao Y, Liu J, Park KC, Endo M. Synthesis of iron-palladium binary alloy nanotubes by template-assisted electrodeposition from metal-complex solution. J Electroanal Chem, 2009, 633: 15–18

    Article  CAS  Google Scholar 

  39. Qin XX, Liu JJ, Wang F, Ji J. Effect of multi-walled carbon nanotubes as second phase on the copper electrochemical reduction behavior for fabricating their nanostructured composite films. J Electroanal Chem, 2011, 651: 233–236

    Article  CAS  Google Scholar 

  40. Kellenberger A, Vaszilcsin N, Brandl W, Duteanu N. Kinetics of hydrogen evolution reaction on skeleton nickel and nickel-titanium electrodes obtained by thermal arc spraying technique. Int J Hydrogen Energy, 2007, 32: 3258–3265

    Article  CAS  Google Scholar 

  41. Chen L, Lasia A. Study of the kinetics of hydrogen evolution reaction on nickel-zinc alloy electrodes. J Electrochem Soc, 1991, 138: 3321–3328

    Article  CAS  Google Scholar 

  42. Diard JP, Gorrec C, Montella C. Linear diffusion impedance. General expression and applications. J Electrochem Chem, 1999, 471: 126–131

    Article  CAS  Google Scholar 

  43. Ciureanu M, Roberge R. Electrochemical impedance study of PEM fuel cells. Experimental diagnostics and modeling of air cathodes. J Phys Chem B, 2001, 105: 3531–3539

    Article  CAS  Google Scholar 

  44. Cha QX. Introduction to Electrode Kinetics. 4th Ed. Beijing: Science Press, 2002

    Google Scholar 

  45. Tasic GS, Maslovara SP, Zugic DL, Maksic AD, Kaninski MPM. Characterization of the Ni-Mo catalyst formed in situ during hydrogen generation from alkaline water electrolysis. Int J Hydrogen Energy, 2011, 36: 11588–11595

    Article  CAS  Google Scholar 

  46. Kaninski MPM, Nikolic VM, Potkonjak TN, Simonovic BR, Potkonjak NI. Catalytic activity of Pt-based intermetallics for the hydrogen production-Influence of ionic activator. Appl Catal A, 2007, 321: 93–99

    Article  Google Scholar 

  47. Giz MJ, Machado SAS, Avaca LA, Gonzalez ER. High area Ni-Zn and Ni-Co-Zn codeposits as hydrogen electrodes in alkaline solutions. J Appl Electrochem, 1992, 22: 973–977

    Article  Google Scholar 

  48. Simpraga RP, Conway BE. The real-area scaling factor in electrocatalysis and in charge storage by supercapacitors. Electrochim Acta, 1998, 43: 3045–3058

    Article  CAS  Google Scholar 

  49. Giz MJ, Bento SC, Gonzale ER. NiFeZn codeposit as a cathode material for the production of hydrogen by water electrolysis. Int J Hydrogen Energy, 2000, 25: 621–626

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Liu, H., Bo, X. et al. Highly active porous nickel-film electrode via polystyrene microsphere template-assisted composite electrodeposition for hydrogen-evolution reaction in alkaline medium. Sci. China Chem. 58, 501–507 (2015). https://doi.org/10.1007/s11426-014-5175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5175-y

Keywords

Navigation