Skip to main content
Log in

Copper-catalyzed Meerwein carboarylation of alkenes with anilines to form 3-benzyl-3-alkyloxindole

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A simple and direct route for double C-C bond formation by copper-catalyzed Meerwein carboarylation process has been developed. In the presence of CuI (5 mol%), tert-butyl nitrite and anilines, a wide variety of N-arylacrylamides underwent tandem Meerwein arylation/C-H cyclization to produce pharmaceutically important 3-benzyl-3-alkyloxindole in moderate to good yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu LQ, Chen JR, Xiao WJ. Development of cascade reactions for the concise construction of diverse heterocyclic architectures. Acc Chem Res, 2012, 45: 1278–1293

    Article  CAS  Google Scholar 

  2. Posner GH. Multicomponent one-pot annulations forming 3 to 6 bonds. Chem Rev, 1986, 1: 831–844

    Article  Google Scholar 

  3. Meerwein H, Buchner E, van Emsterk K. Einwirkung aromatischer diazoverbindungen auf α,β-ungeseittigte carbonylverbindungen. J Prakt Chem, 1939, 152: 237–239

    Article  CAS  Google Scholar 

  4. Heinrich MR. Intermolecular olefin functionalisation involving aryl radicals generated from arenediazonium salts. Chem Eur J, 2009, 15: 820–833

    Article  CAS  Google Scholar 

  5. Mo F, Dong G, Zhang Y, Wang J. Recent applications of arene diazonium salts in organic synthesis. Org Biomol Chem, 2013, 11: 1582–1593

    Article  CAS  Google Scholar 

  6. Hari DP, König B. The photocatalyzed meerwein arylation: classic reaction of aryl diazonium salts in a new light. Angew Chem Int Ed, 2013, 52: 4734–4743

    Article  CAS  Google Scholar 

  7. Minisci F, Coppa F, Fontana F, Pianese G, Zhao L. Polar effects in reactions of carbon-centered radicals with diazonium salts: free-radical diazo coupling. J Org Chem, 1992, 57: 3929–3933

    Article  CAS  Google Scholar 

  8. Heinrich MR, Blank O, Wölfel S. Reductive carbodiazenylation of nonactivated olefins via aryl diazonium salts. Org Lett, 2006, 8: 3323–3325

    Article  CAS  Google Scholar 

  9. Blank O, Wetzel A, Ullrich D, Heinrich MR. Radical carbodiazenylation: a convenient and effective method to achieve carboamination of non-activated olefins. Eur J Org Chem, 2008: 3179–3189

    Google Scholar 

  10. Sahoo B, Hopkinson MN, Glorius F. Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. J Am Chem Soc, 2013, 135: 5505–5508

    Article  CAS  Google Scholar 

  11. Hartmann M, Li Y, Studer M. Transition-metal-free oxyarylation of alkenes with aryl diazonium salts and TEMPONa. J Am Chem Soc, 2012, 134: 16516–16519

    Article  CAS  Google Scholar 

  12. Hari DP, Hering T, and König B. Visible light photocatalytic synthesis of benzothiophenes. Org Lett, 2012, 14: 5334–5337

    Article  CAS  Google Scholar 

  13. Obushak ND, Ganushchak NI, Matiichuk VS. Cyanoarylation of 1,3-butadiene. Russ J Org Chem, 1996, 32: 766

    Google Scholar 

  14. Dai JF, Fang C, Xiao B, Yi J, Xu J, Liu ZJ, Lu X, Liu L, Fu Y. Copper-promoted sandmeyer trifluoromethylation reaction. J Am Chem Soc, 2013, 135: 8436–8439

    Article  CAS  Google Scholar 

  15. Hari DP, Schroll P, König B, Metal-Free. Visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts. J Am Chem Soc, 2012, 134: 2958–2961

    Article  CAS  Google Scholar 

  16. Xiao T, Dong X, Tang Y, Zhou L. Phenanthrene synthesis by eosin Y-catalyzed, visible-light-induced [4 + 2] benzannulation of biaryl diazonium salts with alkynes. Adv Synh Catal, 2012, 354: 3195–3199

    Article  CAS  Google Scholar 

  17. Cano-Yelo H, Deronzier A. Photocatalysis of the Pschorr reaction by tris-(2,2′-bipyridyl) ruthenium(II) in the phenanthrene series. J Chem Soc Perkin Trans II, 1984: 1093–1098

    Google Scholar 

  18. Kalyani D, Mcmurtrey KB, Neufeldt SR, Sanford MS. Room-temperature C-H arylation: merger of Pd-catalyzed C-H functionalization and visible-light photocatalysis. J Am Chem Soc, 2011, 133: 18566–19569

    Article  CAS  Google Scholar 

  19. Weizel A, Ehrhardt V, Heinrich MR. Synthesis of amino- and hydroxybiphenyls by radical chain reaction of arenediazonium salts. Angew Chem Int Ed, 2008, 47: 9130–9133

    Article  Google Scholar 

  20. Fu W, Xu F, Fu Y, Zhu M, Yu J, Xu C, Zou D. Synthesis of 3,3-disubstituted oxindoles by visible-light-mediated radical reactions of aryl diazonium salts with N-arylacrylamides. J Org Chem, 2013, 78: 12202–12206

    Article  CAS  Google Scholar 

  21. Mo F, Jiang Y, Qiu D, Zhang Y, Wang J. Direct conversion of arylamines to pinacol boronates: a metal-free borylation process. Angew Chem Int Ed, 2010, 49: 1846–1849

    Article  CAS  Google Scholar 

  22. Wang X, Xu Y, Mo F, Ji G, Qiu D, Feng J, Ye Y, Zhang S, Zhang Y, Wang J. Silver-mediated trifluoromethylation of aryldiazonium salts: conversion of amino group into trifluoromethyl group. J Am Chem Soc, 2013, 135: 10330–10333

    Article  CAS  Google Scholar 

  23. Trost BM, Brennan MK. Asymmetric syntheses of oxindole and indole spirocyclic alkaloid natural products. Synthesis, 2009: 3003–3025

    Google Scholar 

  24. Galliford CV, Scheidt KA. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew Chem Int Ed, 2007, 46: 8748–8758

    Article  CAS  Google Scholar 

  25. Marti C, Carreira EM. Construction of spiro[pyrrolidine-3,3′-oxindoles]: recent applications to the synthesis of oxindole alkaloids. Eur J Org Chem, 2003: 2209–2219

    Google Scholar 

  26. Klein JEMN, Taylor RJK. Transition-metal-mediated routes to 3,3-disubstituted oxindoles through anilide cyclisation. Eur J Org Chem, 2011: 6821–6841

    Google Scholar 

  27. Wu T, Mu X, Liu GS. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile. Angew Chem Int Ed, 2011, 50: 12578–12581

    Article  CAS  Google Scholar 

  28. Zhou SL, Guo LN, Wang H, Duan XH. Copper-catalyzed oxidative benzylarylation of acrylamides by benzylic C-H bond functionalization for the synthesis of oxindoles. Chem Eur J, 2013, 19: 12970–12973

    Article  CAS  Google Scholar 

  29. Xie J, Xu P, Li H, Li Q, Jin H, Cheng Y, Zhu C. A room temperature decarboxylation/C-H functionalization cascade by visible-light photoredox catalysis. Chem Commun, 2013, 49: 5672–5674

    Article  CAS  Google Scholar 

  30. Wei WT, Zhou MB, Fan JH, Liu W, Song RJ, Liu Y, Hu M, Xie P, Li JH. Synthesis of oxindoles by iron-catalyzed oxidative 1,2-alkylarylation of activated alkenes with an aryl C(sp2)-H bond and a C(sp3)-H bond adjacent to a heteroatom. Angew Chem Int Ed, 2013, 52: 3638–3641

    Article  CAS  Google Scholar 

  31. Zhou B, Hou W, Yang Y, Feng H, Li Y. Copper(I)-catalyzed aryl or vinyl addition to electron-deficient alkenes cascaded by cationic cyclization. Org Lett, 2014, 16: 1322–1325

    Article  CAS  Google Scholar 

  32. Xu X, Tang Y, Li X, Hong G, Fang M, Du X. Iron-catalyzed arylalkoxycarbonylation of N-aryl acrylamides with carbazates. J Org Chem, 2014, 79: 446–451

    Article  CAS  Google Scholar 

  33. Matcha K, Narayan R, Antonchick AP. Metal-free radical azidoarylation of alkenes: rapid access to oxindoles by cascade C-N and C-C bond-forming reactions. Angew Chem Int Ed, 2013, 52: 7985–7989

    Article  CAS  Google Scholar 

  34. Yuan YZ, Shen T, Wang K, Jiao N. Ag-promoted azido-carbocyclization of activated alkenes via C-H bond cleavage. Chem Asian J, 2013, 8: 2932–2935

    Article  CAS  Google Scholar 

  35. Li XQ, Xu XS, Hu PZ, Xiao XQ, Zhou C. Synthesis of sulfonated oxindoles by potassium iodide catalyzed arylsulfonylation of activated alkenes with sulfonylhydrazides in water. J Org Chem, 2013, 78: 7343–7348

    Article  CAS  Google Scholar 

  36. Shen T, Yuan Y, Song S, Jiao N. Iron-catalyzed aerobic difunctionalization of alkenes: a highly efficient approach to construct oxindoles by C-S and C-C bond formation. Chem Commun, 2014, 50: 4415–4118

    Google Scholar 

  37. Fabry DC, Stodulski M, Hoerner S, Gulder T. Metal-free synthesis of 3,3-disubstituted oxoindoles by iodine(III)-catalyzed bromocarbocyclizations. Chem Eur J, 2012, 18: 10834–10838

    Article  CAS  Google Scholar 

  38. Yin F, Wang XS. Silver-mediated radical aryltrifluoromethylthiolaton of activated alkenes. Org Lett, 2014, 16, 1128–1131

    Article  CAS  Google Scholar 

  39. Shen T, Yuan Y, Jiao N. Metal-free nitro-carbocyclization of activated alkenes: a direct approach to synthesize oxindoles by cascade C-N and C-C bond formation. Chem Commun, 2014, 50: 554–556

    Article  CAS  Google Scholar 

  40. Kong W, Casimiro M, Merino E, Nevado C, Copper-catalyzed one-pot trifluoromethylation/aryl migration/desulfonylation and C(sp2)-N bond formation of conjugated tosyl amides. J Am Chem Soc, 2013, 135: 14480–14483

    Article  CAS  Google Scholar 

  41. The configuration and structures of the products 3e were unambiguously assigned by X-ray analysis. See Figure S3 in Supporting Information.

  42. Jones WD. Isotope effects in C-H bond activation reactions by transition metals. Acc Chem Res, 2003, 36: 140–146

    Article  CAS  Google Scholar 

  43. Pinto A, Neuville L, Retailleau P, Zhu J. Synthesis of 3-(diarylmethylenyl)oxindole by a palladium-catalyzed domino carbopalladation/C-H activation/C-C bond-forming process. Org Lett, 2006, 8: 4927–4930

    Article  CAS  Google Scholar 

  44. Chen X, Hao XS, Goodhue CE, Yu JQ. Cu(II)-catalyzed functionalizations of aryl C-H bonds using O2 as an oxidant. J Am Chem Soc, 2006, 128: 6790–6791

    Article  CAS  Google Scholar 

  45. Pazo-Llorente R, Maskill H, Bravo-Diaz C, Gonzalez-Romero E. Dediazoniation of 4-nitrobenzenediazonium ions in acidic MeOH/H2O mixtures: role of acidity and MeOH concentration on the formation of transient diazo ethers that initiate homolytic dediazoniation. Eur J Org Chem, 2006: 2201–2209

    Google Scholar 

  46. Pazo-Llorente R, Bravo-Diaz C, Gonzalez-Romero E. pH effects on ethanolysis of some arenediazonium ions: evidence for homolytic dediazoniation proceeding through formation of transient diazo ethers. Eur J Org Chem, 2004: 3221–3226

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Tang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Zhou, D., Deng, Y. et al. Copper-catalyzed Meerwein carboarylation of alkenes with anilines to form 3-benzyl-3-alkyloxindole. Sci. China Chem. 58, 684–688 (2015). https://doi.org/10.1007/s11426-014-5158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5158-z

Keywords

Navigation