Skip to main content
Log in

Synthesis of hierarchical Polystyrene/Polyaniline@Au nanostructures of different surface states and studies of their catalytic properties

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We synthesized hierarchical Polystyrene/Polyaniline@Au (PS/PANI@Au) catalysts through a seeded swelling polymerization and in-situ reduction procedure. PS/PANI@Au catalysts possess a core of PS as seed and template, a PANI shell with fibers and uniform gold nanoparticles on the surface. The configuration changes of the PANI chains resulting from the doping/dedoping procedure led to various loading amounts of Au nanoparticles. Reduction of 4-nitrophenol was chosen as the probe reaction to evaluate the catalytic activity of supported Au nanocatalysts. The catalytic results indicated that dedoping treatment of the PS/PANI supports provides stronger coordinative ability to metal nanoparticles as well as more -N= groups, which results in a better catalytic performance towards the reduction of 4-nitrophenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B, 2006, 110: 7238–7248

    Article  CAS  Google Scholar 

  2. Robson B. The dragon on the gold: myths and realities for data mining in biomedicine and biotechnology using digital and molecular libraries. J Proteome Res, 2004, 3: 1113–1119

    Article  CAS  Google Scholar 

  3. Zhang L, Chang HX, Hirata A, Wu HK, Xue Q-K, Chen M. Nanoporous gold based optical sensor for sub-ppt detection of mercury ions. ACS Nano, 2013, 7: 4595–4600

    Article  CAS  Google Scholar 

  4. Newman JDS, Roberts JM, Blanchard GJ. Optical organophosphate sensor based upon gold nanoparticle functionalized fumed silica gel. Anal Chem, 2007, 79: 3448–3454

    Article  CAS  Google Scholar 

  5. Wang W, Yuan XQ, Liu XH, Gao Q, Qi HL, Zhang CX. Selective DNA detection at Zeptomole level based on coulometric measurement of gold nanoparticle-mediated electron transfer across a self-assembled monolayer. Sci China Chem, 2013, 56: 1009–1016

    Article  CAS  Google Scholar 

  6. Li YR, Gan ZY, Li YF, Liu Q, Bao JC, Dai ZH, Han M. Immobilization of acetylcholinesterase on one-dimensional gold nanoparticles for detection of organophosphorous insecticides. Sci China Chem, 2010, 53: 820–825

    Article  CAS  Google Scholar 

  7. Zhang JJ, Zhu JJ. A novel amperometric biosensor based on gold nanoparticles-mesoporous silica composite for biosensing glucose. Sci China Chem, 2009, 52: 815–820

    Article  CAS  Google Scholar 

  8. Lin JH, Zhang H, Zhang SS. New bienzymatic strategy for glucose determination by immobilized-gold nanoparticle-enhanced chemiluminescence. Sci China Chem, 2009, 52: 196–202

    Article  Google Scholar 

  9. Huang XJ, Li CC, Gu B, Kim J, Cho SO, Choi YK. Controlled molecularly mediated assembly of gold nanooctahedra for a glucose biosensor. J Phys Chem C, 2008, 112: 3605–3611

    Article  CAS  Google Scholar 

  10. Liu JW, Lu Y. A Colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc, 2003, 125: 6642–6643

    Article  CAS  Google Scholar 

  11. Etesami M, Mohamed N. Electrooxidation of ethylene glycol using gold nanoparticles electrodeposited on pencil graphite in alkaline medium. Sci China Chem, 2012, 55: 247–255

    Article  CAS  Google Scholar 

  12. Chen X, Zhao DY, Zhao LZ, An YL, Ma RJ, Shi LQ, He QJ, Chen L. Optic and catalytic properties of gold nanoparticles tuned by homopolymers. Sci China Chem, 2009, 52: 1372–1381

    Article  CAS  Google Scholar 

  13. Li D, Sun CY, Huang YJ, Li JH, Chen SW. Surface effects of monolayer-protected gold nanoparticles on the redox reactions between ferricyanide and thiosulfate. Sci China Chem, 2005, 48: 424–430

    Article  CAS  Google Scholar 

  14. Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia1 A, Tikhov MS, Johnson BFG, Lambert RM. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature, 2008, 454: 981–983

    Article  CAS  Google Scholar 

  15. Gross E, Liu JH, Alayoglu S, Marcus MA, Fakra SC, Toste FD, Somorjai GA. Asymmetric catalysis at the mesoscale: gold nanoclusters embedded in chiral self-assembled monolayer as heterogeneous catalyst for asymmetric reactions. J Am Chem Soc, 2013, 135: 3881–3886

    Article  CAS  Google Scholar 

  16. Gajan D, Guillois K, Delichère P, Basset JM, Candy JP, Caps V, Coperet C, Lesage A, Emsley L. Gold nanoparticles supported on passivated silica: access to an efficient aerobic epoxidation catalyst and the intrinsic oxidation activity of gold. J Am Chem Soc, 2009, 131: 14667–14669

    Article  CAS  Google Scholar 

  17. Abad A, Corma A, García H. Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: the molecular reaction mechanism. Chem Eur J, 2008, 14: 212–222

    Article  CAS  Google Scholar 

  18. Lopeza N, Janssensb TVW, Clausenb BS, Xuc Y, Mavrikakisc M, Bligaardd T, Nørskov JK. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J Catal, 2004, 223: 232–235

    Article  Google Scholar 

  19. Ilievaa L, Pantaleob G, Ivanova I, Veneziac AM, Andreevaa D. Gold catalysts supported on CeO2 and CeO2-Al2O3 for NOx reduction by CO. Appl Catal B, 2006, 65: 101–109

    Article  Google Scholar 

  20. Crooks R, Zhao M, Sun L, Chechik V, Yeung LK. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res, 2001, 34: 181–190

    Article  CAS  Google Scholar 

  21. Zhou XH, Li JR, Liu CY, Jiang L. Preparation, stability and two-dimensional ordered arrangement of gold nanoparticles capped by surfactants with different chain lengths. Sci China Chem, 2002, 45: 358–364

    Article  CAS  Google Scholar 

  22. Zanella R, Sandoval A, Santiago P, Basiuk VA, Saniger JM. New preparation method of gold nanoparticles on SiO2. J Phys Chem B, 2006, 110: 8559–8565

    Article  CAS  Google Scholar 

  23. Guczi L, Petö G, Beck A, Frey K, Geszti O, Molnár G, Daróczi C. Gold nanoparticles deposited on SiO2/Si(100): correlation between size, electron structure, and activity in CO oxidation. J Am Chem Soc, 2003, 125: 4332–4337

    Article  CAS  Google Scholar 

  24. Zhou L, Gao C, Xu W. Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers. Langmuir, 2010, 26: 11217–11225

    Article  CAS  Google Scholar 

  25. Martra G, Prati L, Manfredotti C, Biella S, Rossi M, Coluccia S. Nanometer-sized gold particles supported on SiO2 by deposition of gold sols from Au(PPh3)3Cl. J Phys Chem B, 2003, 107: 5453–5459

    Article  CAS  Google Scholar 

  26. Kim B, Sigmund WM. Functionalized multiwall carbon nanotube/gold nanoparticle composites. Langmuir, 2004, 20: 8239–8242

    Article  CAS  Google Scholar 

  27. Xia X, Strunk J, Busser W, Comotti M, Schüth F, Muhler M. Thermodynamics and kinetics of the adsorption of carbon monoxide on supported gold catalysts probed by static adsorption microcalorimetry: the role of the support. J Phys Chem C, 2009, 113: 9328–9335

    Article  CAS  Google Scholar 

  28. Jiang KY, Eitan A, Schadler LS, Ajayan PM, Siegel RW, Grobert N, Mayne M, Reyes-Reyes M, Terrones H, Terrones M. Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes. Nano Lett, 2003, 3: 275–277

    Article  CAS  Google Scholar 

  29. Wang ZM, Li ZX, Liu ZH. Photostimulated reversible attachment of gold nanoparticles on multiwalled carbon nanotubes. J Phys Chem C, 2009, 113: 3899–3902

    Article  CAS  Google Scholar 

  30. Han YF, Zhong ZY, Ramesh K, Chen FX, Chen LW. Effects of different types of γ-Al2O3 on the activity of gold nanoparticles for CO oxidation at low-temperatures. J Phys Chem C, 2007, 111: 3163–3170

    Article  CAS  Google Scholar 

  31. Bus E, Miller JT, van Bokhoven JA. Hydrogen chemisorption on Al2O3-supported gold catalysts. J Phys Chem B, 2005, 109: 14581–14587

    Article  CAS  Google Scholar 

  32. Shekhar M, Wang J, Lee WS, Williams WD, Kim SM, Stach EA, Miller JT, Delgass WN, Ribeiro FH. Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J Am Chem Soc, 2012, 134: 4700–4708

    Article  CAS  Google Scholar 

  33. Yao HB, Mao LB, Yan YX, Cong HP, Lei X, Yu SH. Gold nanoparticle functionalized artificial nacre: facile in situ growth of nanoparticles on montmorillonite nanosheets, self-assembly, and their multiple properties. ACS Nano, 2012, 6: 8250–8260

    Article  CAS  Google Scholar 

  34. Belova V, Möhwald H, Shchukin DG. Ultrasonic intercalation of gold nanoparticles into a clay matrix in the presence of surface-active materials. Part II: Negative sodium dodecylsulfate and positive cetyltrimethylammonium bromide. J Phys Chem C, 2009, 113: 6751–6760

    Article  CAS  Google Scholar 

  35. Belova V, Andreeva DV, Möhwald H, Shchukin DG. Ultrasonic intercalation of gold nanoparticles into clay matrix in the presence of surface-active materials. Part I: Neutral polyethylene glycol. J Phys Chem C, 2009, 113: 5381–5389

    Article  CAS  Google Scholar 

  36. Jang SG, Khan A, Hawker CJ, Kramer EJ. Morphology evolution of PS-b-P2VP diblock copolymers via supramolecular assembly of hydroxylated gold nanoparticles. Macromolecules, 2012, 45: 1553–1561

    Article  CAS  Google Scholar 

  37. Lu JQ, Yi SS. Uniformly sized gold nanoparticles derived from PS-b-P2VP block copolymer templates for the controllable synthesis of Si nanowires. Langmuir, 2006, 22: 3951–3954

    Article  CAS  Google Scholar 

  38. Singh N, Lyon LA. Au nanoparticle templated synthesis of pNIPAm nanogels. Chem Mater, 2007, 19: 719–726

    Article  CAS  Google Scholar 

  39. Vogel N, Fernández-López C, Pérez-Juste J, Liz-Marzán LM, Landfester K, Weiss CK. Ordered arrays of gold nanostructures from interfacially assembled Au@PNIPAM hybrid nanoparticles. Langmuir, 2012, 28: 8985–8993

    Article  CAS  Google Scholar 

  40. Guo WC, Wang Q, Wang G, Yang M, Dong WJ, Yu J. Facile hydrogen-bond-assisted polymerization and immobilization method to synthesize hierarchical Fe3O4@Poly(4-vinylpyridine-codivinylbenzene)@Au nanostructures and their catalytic applications. Chem Asian J, 2013, 8: 1160–1167

    Article  CAS  Google Scholar 

  41. Okubo M, Ise E, Yamashita T. Production of micron-sized monodispersed polymer particles by seeded polymerization for the dispersion of highly monomer-swollen particles prepared with submicron-sized polymer seed particles utilizing the dynamic swelling method. J Polym Sci Part A: Polym Chem, 1998, 36: 2513–2519

    Article  CAS  Google Scholar 

  42. Tan L, Cao LJ, Yang M, Wang G, Sun DB. Formation of dual-responsive polystyrene/polyaniline microspheres with sea urchin-like and core-shell morphologies. Polymer, 2011, 52: 4770–4776

    Article  CAS  Google Scholar 

  43. Zhang LX, Liu P, Su ZX. Preparation of PANI-TiO2 nanocomposites and their solid-phase photocatalytic degradation. Polym Degrad Stab, 2006, 91: 2213–2219

    Article  CAS  Google Scholar 

  44. Pruneanu S, Veress E, Marian I, Oniciu L. Characterization of polyaniline by cyclic voltammetry and UV-Vis absorption spectroscopy. J Mater Sci, 1999, 34: 2733–2739

    Article  CAS  Google Scholar 

  45. Xing SX, Chu Y, Sui XM, Wu ZS. Synthesis and characterization of polyaniline in CTAB/hexanol/water reversed micelle. J Mater Sci, 2005, 40: 215–218

    Article  CAS  Google Scholar 

  46. Liu B, Zhang W, Feng HL, Yang XL. Rattle-type microspheres as a support of tiny gold nanoparticles for highly efficient catalysis. Chem Commun, 2011, 47: 11727–11729

    Article  CAS  Google Scholar 

  47. Sui XM, Chu Y, Xing SX, Liu CZ. Synthesis of PANI/AgCl, PANI/BaSO4 and PANI/TiO2 nanocomposites in CTAB/hexanol/ water reverse micelle. Mater Lett, 2004, 58: 1255–1259

    Article  CAS  Google Scholar 

  48. Sylvestre JP, Poulin S, Kabashin AV, Sacher E, Meunier M, Luong JHT. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem B, 2004, 108: 16864–16869

    Article  CAS  Google Scholar 

  49. Trchová M, Šeděnková I, Tobolková E, Stejskal J. FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. Polym Degrad Stab, 2004, 86: 179–185

    Article  Google Scholar 

  50. Jana S, Ghosh SK, Nath S, Pande S, Praharaj S, Panigrahi S, Basu S, Endo T, Pal T. Synthesis of silver nanoshell-coated cationic polystyrene beads: a solid phase catalyst for the reduction of 4-nitrophenol. Appl Catal A, 2006, 313: 41–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Luan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Guo, W., Yang, M. et al. Synthesis of hierarchical Polystyrene/Polyaniline@Au nanostructures of different surface states and studies of their catalytic properties. Sci. China Chem. 57, 1211–1217 (2014). https://doi.org/10.1007/s11426-014-5106-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5106-y

Keywords

Navigation