Skip to main content
Log in

Facile synthesis of size-tunable stable nanoparticles via click reaction for cancer drug delivery

  • Articles
  • Special Issue Recent Research Progress of Biomedical Polymers
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The stability and size of polymeric nanoparticles are two of the most important parameters determining their pharmacokinetics and tumor/drug accumulation efficiency in cancer-drug delivery. Herein, we report a facile one-pot synthesis of crosslinked nanoparticles (CNPs) with tunable sizes and polyethylene glycol (PEG) shells via click reactions. Simply by adjusting the contents of the macromonomer (PEG monoacrylate) in its reaction with ethylene diacrylate and a crosslinker containing hexa-thiols groups, the sizes of the resulting PEGylated crosslinked nanoparticles could be easily tuned from 10 to 90 nm. These nanoparticle cores could encapsulate hydrophobic drugs such as doxorubicin (DOX), and the unreacted thiol and acrylate groups could be used for drug conjugation or labeling. Thus, the nanoparticles provide a multifunctional platform for drug delivery. In vivo studies showed that the larger nanoparticles (about 83.7 nm) had a much longer blood-circulation time and better tumor-targeting efficiency. One of our most important findings was that the drug encapsulated in the crosslinked nanoparticles, even though little was released at pH 7.4 under in vitro conditions, had much faster blood clearance than the nanoparticles’ carrier, suggesting that drug release in the bloodstream was significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen YQ, Jin EL, Zhang B, Murphy CJ, Sui MH, Zhao J, Wang JQ, Tang JB, Fan MH, Van Kirk E, Murdoch WJ. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc, 2010, 132: 4259–4265

    Article  CAS  Google Scholar 

  2. Sultana S, Khan MR, Kumar M, Kumar S, Ali M. Nanoparticlesmediated drug delivery approaches for cancer targeting: a review. J Drug Target, 2013, 21: 107–125

    Article  CAS  Google Scholar 

  3. Jin EL, Zhang B, Sun XR, Zhou ZX, Ma XP, Sun QH, Tang JB, Shen YQ, Van Kirk E, Murdoch WJ, Radosz M. Acid-active cellpenetrating peptides for in vivo tumor-targeted drug delivery. J Am Chem Soc, 2013, 135: 933–940

    Article  CAS  Google Scholar 

  4. Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Del Rev, 2009, 61: 768–784

    Article  CAS  Google Scholar 

  5. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim S-B, Rha SY, Lee MY, Ro J. Multicenter phase II trial of Genexol-PM, a Cremophorfree, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat, 2008, 108: 241–250

    Article  CAS  Google Scholar 

  6. Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, Kim NK, Bang YJ. Phase I and pharmacokinetic study of Genexol-PM, a cremophorfree, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res, 2004, 10: 3708–3716

    Article  CAS  Google Scholar 

  7. Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. J Controlled Release, 2012, 159: 312–323

    Article  CAS  Google Scholar 

  8. Sun Q, Radosz M, Shen Y. Challenges in design of translational nanocarriers. J Controlled Release, 2012, 164: 156–169

    Article  CAS  Google Scholar 

  9. Rijcken CJ, Snel CJ, Schiffelers RM, van Nostrum CF, Hennink WE. Hydrolysable core-crosslinked thermosensitive polymeric micelles: synthesis, characterisation and in vivo studies. Biomaterials, 2007, 28: 5581–5593

    Article  CAS  Google Scholar 

  10. Lu J, Owen SC, Shoichet MS. Stability of self-assembled polymeric micelles in serum. Macromolecules, 2011, 44: 6002–6008

    Article  CAS  Google Scholar 

  11. Savic R, Azzam T, Eisenberg A, Maysinger D. Assessment of the integrity of poly(caprolactone)-b-poly(ethylene oxide) micelles under biological conditions: a fluorogenic-based approach. Langmuir, 2006, 22: 3570–3578

    Article  CAS  Google Scholar 

  12. Soga O, van Nostrum CF, Snel CJ, Fens MH, Schiffelers RM, Storm G, Hennink WE. In vivo efficacy of paclitaxel-loaded thermosensitive biodegradable polymeric micelles. Dissertation for the Master Degree. Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands, 2006

    Google Scholar 

  13. Kim SH, Tan JP, Nederberg F, Fukushima K, Colson J, Yang C, Nelson A, Yang YY, Hedrick JL. Hydrogen bonding-enhanced micelle assemblies for drug delivery. Biomaterials, 2010, 31: 8063–8071

    Article  CAS  Google Scholar 

  14. Liu R, Li D, He B, Xu X, Sheng M, Lai Y, Wang G, Gu Z. Antitumor drug delivery of pH-sensitive poly(ethylene glycol)-poly(l-histidine-)-poly(l-lactide) nanoparticles. J Controlled Release, 2011, 152: 49–56

    Article  CAS  Google Scholar 

  15. Lee ES, Oh KT, Kim D, Youn YS, Bae YH. Tumor pH-responsive flower-like micelles of poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(l-histidine). J Controlled Release, 2007, 123: 19–26

    Article  CAS  Google Scholar 

  16. Talelli M, Iman M, Varkouhi AK, Rijcken CJ, Schiffelers RM, Etrych T, Ulbrich K, van Nostrum CF, Lammers T, Storm G. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials, 2010, 31: 7797–7804

    Article  CAS  Google Scholar 

  17. Coimbra M, Rijcken CJ, Stigter M, Hennink WE, Storm G, Schiffelers RM. Antitumor efficacy of dexamethasone-loaded core-crosslinked polymeric micelles. J Controlled Release, 2012, 163: 361–367

    Article  CAS  Google Scholar 

  18. Talelli M, Rijcken CJ, Oliveira S, van der Meel R, van Bergen en Henegouwen PM, Lammers T, van Nostrum CF, Storm G, Hennink WE. Nanobody-shell functionalized thermosensitive core-crosslinked polymeric micelles for active drug targeting. J Controlled Release, 2011, 151: 183–192

    Article  CAS  Google Scholar 

  19. Wu L, Zou Y, Deng C, Cheng R, Meng F, Zhong Z. Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions. Biomaterials, 2013, 34: 5262–5272

    Article  CAS  Google Scholar 

  20. Chen J, Ouyang J, Kong J, Zhong W, Xing MM. Photo-cross-linked and pH-Sensitive biodegradable micelles for doxorubicin delivery. Acs App Mater Interf, 2013, 5: 3108–3117

    Article  CAS  Google Scholar 

  21. Shuai X, Merdan T, Schaper AK, Xi F, Kissel T. Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjugate Chem, 2004, 15: 441–448

    Article  CAS  Google Scholar 

  22. Duong HT, Nguyen TU, Stenzel MH. Micelles with surface conjugated RGD peptide and crosslinked polyurea core via RAFT polymerization. Polym Chem, 2010, 1: 171–182

    Article  CAS  Google Scholar 

  23. Zhang L, Bernard J, Davis TP, Barner-Kowollik C, Stenzel MH. Aciddegradable core-crosslinked micelles prepared from thermosensitive glycopolymers synthesized via RAFT polymerization. Macromol Rapid Commun, 2008, 29: 123–129

    Article  CAS  Google Scholar 

  24. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm, 2008, 5: 505–515

    Article  CAS  Google Scholar 

  25. Fang C, Shi B, Pei YY, Hong MH, Wu J, Chen HZ. In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci, 2006, 27: 27–36

    Article  CAS  Google Scholar 

  26. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotech, 2011, 6: 815–823

    Article  CAS  Google Scholar 

  27. Ma X, Tang J, Shen Y, Fan M, Tang H, Radosz M. Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers. J Am Chem Soc, 2009, 131: 14795–14803

    Article  CAS  Google Scholar 

  28. Geetha B, Mandal AB, Ramasami T. Synthesis, characterization, and micelle formation in an aqueous solution of methoxypolyethylene glycol macromonomer, homopolymer, and graft copolymer. Macromolecules, 1993, 26: 4083–4088

    Article  CAS  Google Scholar 

  29. Sui M, Chen F, Chen Z, Fan W. Glucocorticoids interfere with therapeutic efficacy of paclitaxel against human breast and ovarian xenograft tumors. Int J Cancer, 2006, 119: 712–717

    Article  CAS  Google Scholar 

  30. Kalarickal NC, Rimmer S, Sarker P, Leroux JC. Thiol-functionalized poly(ethylene glycol)-b-polyesters: synthesis and characterization. Macromolecules, 2007, 40: 1874–1880

    Article  CAS  Google Scholar 

  31. Chan JW, Hoyle CE, Lowe AB, Bowman M. Nucleophile-initiated thiol-michael reactions: effect of organocatalyst, thiol, and ene. Macromolecules, 2010, 43: 6381–6388

    Article  CAS  Google Scholar 

  32. Wang N, Dong A, Tang H, Van Kirk EA, Johnson PA, Murdoch WJ, Radosz M, Shen Y. Synthesis of degradable functional poly(ethylene glycol) analogs as versatile drug delivery carriers. Macromol Biosci, 2007, 7: 1187–1198

    Article  CAS  Google Scholar 

  33. Dan K, Ghosh S. One-pot synthesis of an acid-labile amphiphilic triblock copolymer and its pH-responsive vesicular assembly. Angew Chem Int Ed, 2013, 52: 1–7

    Article  CAS  Google Scholar 

  34. Yan L, Wu W, Zhao W, Qi R, Cui D, Xie Z, Huang Y, Tong T, Jing X. Reduction-sensitive core-cross-linked mPEG-poly (ester-carbonate) micelles for glutathione-triggered intracellular drug release. Polym Chem, 2012, 3: 2403–2412

    Article  CAS  Google Scholar 

  35. Lee SJ, Min KH, Lee HJ, Koo AN, Rim HP, Jeon BJ, Jeong SY, Heo JS, Lee SC. Ketal cross-linked poly(ethylene glycol)-poly(amino acid)s copolymer micelles for efficient intracellular delivery of doxorubicin. Biomacromolecules, 2011, 12: 1224–1233

    Article  CAS  Google Scholar 

  36. Ghosh S, Basu S, Thayumanavan S. Simultaneous and reversible functionalization of copolymers for biological applications. Macromolecules, 2006, 39: 5595–5597

    Article  CAS  Google Scholar 

  37. Shen Y, Jin E, Zhang B, Murphy CJ, Sui M, Zhao J, Wang J, Tang J, Fan M, Van Kirk E. Prodrugs forming high drug loading multifunc tional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc, 2010, 132: 4259–4265

    Article  CAS  Google Scholar 

  38. Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjugate Chem, 2011, 22: 1879–1903

    Article  CAS  Google Scholar 

  39. Kim J, Lee JE, Lee SH, Yu JH, Lee JH, Park TG, Hyeon T. Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Adv Mater, 2008, 20: 478–483

    Article  CAS  Google Scholar 

  40. Wang A, Gao H, Sun Y, Sun Y, Yang YW, Wu G, Wang Y, Fan Y, Ma J. Temperature-and pH-responsive nanoparticles of biocompatible polyurethanes for doxorubicin delivery. Int J Pharm, 2013, 441: 30–39

    Article  CAS  Google Scholar 

  41. Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc, 2012, 134: 5722–5725

    Article  CAS  Google Scholar 

  42. Mizutani H, Tada-Oikawa S, Hiraku Y, Kojima M, Kawanishi S. Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci, 2005, 76: 1439–1453

    Article  CAS  Google Scholar 

  43. Cheng Y, Yu SL, Wang JJ, Qian HQ, Wu W, Jiang XQ. In vitro and in vivo antitumor activity of doxorubicin-loaded alginic-acid-based nanoparticles. Macromol Biosci, 2012, 12: 1326–1335

    Article  CAS  Google Scholar 

  44. Zhang L, Zhu S, Qian L, Pei Y, Qiu Y, Jiang Y. RGD-modified PEG-PAMAM-DOX conjugates: in vitro and in vivo studies for glioma. Eur J Pharm Biopharm, 2011, 79: 232–240

    Article  CAS  Google Scholar 

  45. Zhang S, Liu XB, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, Yeh ETH. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med, 2012, 18: 1639–1642

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YouQing Shen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, M., Liu, X., Tang, J. et al. Facile synthesis of size-tunable stable nanoparticles via click reaction for cancer drug delivery. Sci. China Chem. 57, 633–644 (2014). https://doi.org/10.1007/s11426-014-5074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5074-2

Keywords

Navigation