Skip to main content

Biomimetic Nanosystems in Targeted Drug Delivery

  • Chapter
  • First Online:
Biomimetic Biomaterials for Tissue Regeneration and Drug Delivery

Abstract

Nanotechnology in cancer has been a boon to the translational science bringing advantages to the conventional drug delivery approaches. There are different types of nanoparticles such as liposomes, dendrimers, and mesoporous silica nanoparticles that are being employed to improve the overall biodistribution of the drug; however, this often fails in in vivo model due to the lack of stealth property, ultimately leading to immune rejection. PEG, chitosan, etc. are polymeric coatings that have been used as stealth covering around nanoparticles that prevent the nanoparticles from aggregation of proteins and opsonization. However, synthesis of polymeric coatings requires chemistries for conjugation that are often tedious and labor intensive. In this scenario, biomimetic nanoparticles have become convenient as they can be produced without much use of organic solvents. In addition, they can mediate natural targeting due to the virtue of homotypic interaction with membrane proteins present on the host cell. In addition, they can also prevent immune recognition due to the presence of marker proteins that are often recognized as “self” by the body. There have been several achievements in this field; still there are certain limitations that need to be dealt with. Techniques to produce biomimetic nanoparticles in a cost-effective manner in larger batches can lessen the burden in manufacturing process. Biomimetic nanoparticles possess immense benefits with better targeting and stealth property that can reduce the shortcomings of the traditional nanoparticles employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tambosi G et al (2018) Challenges to improve the biopharmaceutical properties of poorly water-soluble drugs and the application of the solid dispersion technology. Matéria (Rio de Janeiro) 23

    Google Scholar 

  2. Vrignaud S, Benoit J-P, Saulnier P (2011) Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials 32(33):8593–8604

    Article  CAS  PubMed  Google Scholar 

  3. Olusanya TOB et al (2018) Liposomal drug delivery systems and anticancer drugs. Molecules 23(4):907

    Article  PubMed Central  Google Scholar 

  4. Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C 60:569–578

    Article  CAS  Google Scholar 

  5. Xu W, Ling P, Zhang T (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013:340315

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wakaskar R (2017) Polymeric micelles for drug delivery. Int J Drug Dev Res 9:3

    Google Scholar 

  7. Antoni P et al (2009) Bifunctional dendrimers: from robust synthesis and accelerated one-pot postfunctionalization strategy to potential applications. Angew Chem Int Ed Engl 48(12):2126–2130

    Article  CAS  PubMed  Google Scholar 

  8. Shadrack DM, Mubofu EB, Nyandoro SS (2015) Synthesis of polyamidoamine dendrimer for encapsulating tetramethylscutellarein for potential bioactivity enhancement. Int J Mol Sci 16(11):26363–26377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beddoes CM, Case CP, Briscoe WH (2015) Understanding nanoparticle cellular entry: a physicochemical perspective. Adv Colloid Interf Sci 218:48–68

    Article  CAS  Google Scholar 

  10. Price PM et al (2018) Magnetic drug delivery: where the field is going. Front Chem 6(619)

    Google Scholar 

  11. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7(1):144

    Article  PubMed  PubMed Central  Google Scholar 

  12. Singh P et al (2018) Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 19(7)

    Google Scholar 

  13. Shahbazi MA, Herranz B, Santos HA (2012) Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomatter 2(4):296–312

    Article  PubMed  PubMed Central  Google Scholar 

  14. Salmaso S, Caliceti P (2013) Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv 2013:374252

    Article  PubMed  PubMed Central  Google Scholar 

  15. Garcia-Fuentes M et al (2005) A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery. Eur J Pharm Sci 25(1):133–143

    Article  CAS  PubMed  Google Scholar 

  16. Garay RP et al (2012) Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv 9(11):1319–1323

    Article  CAS  PubMed  Google Scholar 

  17. Bludau H et al (2017) POxylation as an alternative stealth coating for biomedical applications. Eur Polym J 88:679–688

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X et al (2019) Trastuzumab-coated nanoparticles loaded with docetaxel for breast cancer therapy. Dose Response 17(3):1559325819872583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu S et al (2019) PD-L1 monoclonal antibody-conjugated nanoparticles enhance drug delivery level and chemotherapy efficacy in gastric cancer cells. Int J Nanomedicine 14:17–32

    Article  CAS  PubMed  Google Scholar 

  20. Yoo J et al (2019) Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers (Basel) 11(5)

    Google Scholar 

  21. Poltavets YI et al (2019) In vitro anticancer activity of folate-modified docetaxel-loaded PLGA nanoparticles against drug-sensitive and multidrug-resistant cancer cells. Cancer Nanotechnol 10(1):2

    Article  Google Scholar 

  22. Huo M et al (2017) Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment. J Control Release 245:81–94

    Article  CAS  PubMed  Google Scholar 

  23. Mei L et al (2014) Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor targeting and penetrating. Int J Pharm 474(1–2):95–102

    Article  CAS  PubMed  Google Scholar 

  24. Shao K et al (2010) Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release 147(1):118–126

    Article  CAS  PubMed  Google Scholar 

  25. Ché C et al (2010) New angiopep-modified doxorubicin (ANG1007) and etoposide (ANG1009) chemotherapeutics with increased brain penetration. J Med Chem 53:2814–2824

    Article  PubMed  Google Scholar 

  26. Guo J et al (2011) Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32(31):8010–8020

    Article  CAS  PubMed  Google Scholar 

  27. Duan T et al (2019) HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomed Pharmacother 117:109121

    Article  CAS  PubMed  Google Scholar 

  28. Li B et al (2018) The potential of biomimetic nanoparticles for tumor-targeted drug delivery. Nanomedicine (Lond) 13(16):2099–2118

    Article  CAS  Google Scholar 

  29. Qu N et al (2019) Docetaxel-loaded human serum albumin (HSA) nanoparticles: synthesis, characterization, and evaluation. Biomed Eng Online 18(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wongsasulak S et al (2010) Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. J Food Eng 98:370–376

    Article  CAS  Google Scholar 

  31. Iravani S et al (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhen Z et al (2013) Ferritin nanocages to encapsulate and deliver photosensitizers for efficient photodynamic therapy against cancer. ACS Nano 7(8):6988–6996

    Article  CAS  PubMed  Google Scholar 

  33. Sanchez-Gaytan BL et al (2015) HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages. Bioconjug Chem 26(3):443–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu Y et al (2013) Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat Nanotechnol 8(3):187–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan T et al (2017) Peptide self-assembled nanostructures for drug delivery applications. J Nanomater 2017:4562474

    Article  Google Scholar 

  36. Dash P, Piras AM, Dash M (2020) Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. J Control Release 327:546–570

    Article  CAS  PubMed  Google Scholar 

  37. Rao L et al (2017) Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11(4):3496–3505

    Article  CAS  PubMed  Google Scholar 

  38. Zhai Y et al (2017) Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics 7(10):2575–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang J et al (2015) Synthesis of nanogels via cell membrane-templated polymerization. Small 11(34):4309–4313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Y et al (2019) Cell membrane coating technology: a promising strategy for biomedical applications. Nano-Micro Lett 11(1):100

    Article  CAS  Google Scholar 

  41. Luk BT, Zhang L (2015) Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release 220(Pt B):600–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fang RH et al (2014) Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 14(4):2181–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu CM et al (2011) Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A 108(27):10980–10985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bidkar AP, Sanpui P, Ghosh SS (2020) Transferrin-conjugated red blood cell membrane-coated poly(lactic-co-glycolic acid) nanoparticles for the delivery of doxorubicin and methylene blue. ACS Appl Nano Mater 3(4):3807–3819

    Article  CAS  Google Scholar 

  45. Xia Q et al (2019) Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B 9(4):675–689

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dong Y et al (2018) The survival of fetal and bone marrow monocyte-derived alveolar macrophages is promoted by CD44 and its interaction with hyaluronan. Mucosal Immunol 11(3):601–614

    Article  CAS  PubMed  Google Scholar 

  47. Sun K et al (2020) Saikosaponin D loaded macrophage membrane-biomimetic nanoparticles target angiogenic signaling for breast cancer therapy. Appl Mater Today 18:100505

    Article  Google Scholar 

  48. Pitchaimani A, Nguyen TDT, Aryal S (2018) Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials 160:124–137

    Article  CAS  PubMed  Google Scholar 

  49. Han Y et al (2019) T cell membrane mimicking nanoparticles with bioorthogonal targeting and immune recognition for enhanced photothermal therapy. Adv Sci 6(15):1900251

    Article  Google Scholar 

  50. Cao X et al (2019) Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma. Acta Pharm Sin B 9(3):575–589

    Article  PubMed  Google Scholar 

  51. Li Z, Hu S, Cheng K (2018) Platelets and their biomimetics for regenerative medicine and cancer therapies. J Mater Chem B 6(45):7354–7365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Song Y et al (2019) Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE(−/−)) mice. Nanomedicine 15(1):13–24

    Article  CAS  PubMed  Google Scholar 

  53. Nie D et al (2020) Cancer-cell-membrane-coated nanoparticles with a yolk–Shell structure augment cancer chemotherapy. Nano Lett 20(2):936–946

    Article  CAS  PubMed  Google Scholar 

  54. Gao C et al (2016) Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small 12(30):4056–4062

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoni Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dash, P., Dash, M. (2022). Biomimetic Nanosystems in Targeted Drug Delivery. In: Dash, M. (eds) Biomimetic Biomaterials for Tissue Regeneration and Drug Delivery. Springer, Singapore. https://doi.org/10.1007/978-981-16-4566-2_3

Download citation

Publish with us

Policies and ethics