Skip to main content
Log in

The complex structures of ALKBH2 mutants cross-linked to dsDNA reveal the conformational swing of β-hairpin

  • Articles
  • Special Issue · The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Mammalian AlkB homologue 2 (ALKBH2) is the primary housekeeping DNA demethylase, effectively repairing endogenously formed methylated lesions in double-stranded DNA. Our previous studies demonstrated that a hydrophobic β-hairpin motif of ALKBH2 could play crucial roles in base-pair stability interrogation and damaged base flipping. Using chemical cross-linking strategy, we obtained two crystal structures of human ALKBH2 mutant bound to duplex DNA. The structural analysis suggests that the β-hairpin motif is flexible in conformation and is likely to slide along the DNA duplex in local regions to search for damaged base. This study provides a new mechanistic insight into DNA damage detection by ALKBH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sedgwick B. Repairing DNA-methylation damage. Nat Rev Mol Cell Biol, 2004, 5(2): 148–157

    Article  CAS  Google Scholar 

  2. Lindahl T, Sedgwick B, Sekiguchi M, Nakabeppu Y. Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem, 1988, 57: 133–157

    Article  CAS  Google Scholar 

  3. Sedgwick B, Bates PA, Paik J, Jacobs SC, Lindahl T. Repair of alkylated DNA: Recent advances. DNA Repair (Amst), 2007, 6(4): 429–442

    Article  CAS  Google Scholar 

  4. Mishina Y, Duguid EM, He C. Direct reversal of DNA alkylation damage. Chem Rev, 2006, 106(2): 215–232

    Article  CAS  Google Scholar 

  5. Falnes PO, Johansen RF, Seeberg E. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature, 2002, 419(6903): 178–182

    Article  CAS  Google Scholar 

  6. Aas PA, Otterlei M, Falnes PO, Vagbo CB, Skorpen F, Akbari M, Sundheim O, Bjoras M, Slupphaug G, Seeberg E, Krokan HE. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature, 2003, 421(6925): 859–863

    Article  CAS  Google Scholar 

  7. Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B. Reversal of DNA alkylation damage by two human dioxygenases. Proc Natl Acad Sci USA, 2002, 99(26): 16660–16665

    Article  CAS  Google Scholar 

  8. Ringvoll J, Nordstrand LM, Vagbo CB, Talstad V, Reite K, Aas PA, Lauritzen KH, Liabakk NB, Bjork A, Doughty RW, Falnes PO, Krokan HE, Klungland A. Repair deficient mice reveal mABH2 as the primary oxidative demethylase for repairing 1meA and 3meC lesions in DNA. Embo J, 2006, 25(10): 2189–2198

    Article  CAS  Google Scholar 

  9. Gilljam KM, Feyzi E, Aas PA, Sousa MM, Muller R, Vagbo CB, Catterall TC, Liabakk NB, Slupphaug G, Drablos F, Krokan HE, Otterlei M. Identification of a novel, widespread, and functionally important PCNA-binding motif. J Cell Biol, 2009, 186(5): 645–654

    Article  CAS  Google Scholar 

  10. Fujii T, Shimada K, Anai S, Fujimoto K, Konishi N. ALKBH2, a novel AlkB homologue, contributes to human bladder cancer progression by regulating MUC1 expression. Cancer Sci, 2013, 104(3): 321–327

    Article  CAS  Google Scholar 

  11. Cetica V, Genitori L, Giunti L, Sanzo M, Bernini G, Massimino M, Sardi I. Pediatric brain tumors: mutations of two dioxygenases (hABH2 and hABH3) that directly repair alkylation damage. J Neurooncol, 2009, 94(2): 195–201

    Article  CAS  Google Scholar 

  12. Johannessen TC, Prestegarden L, Grudic A, Hegi ME, Tysnes BB, Bjerkvig R. The DNA repair protein ALKBH2 mediates temozolomide resistance in human glioblastoma cells. Neuro Oncol, 2013, 15(3): 269–278

    Article  CAS  Google Scholar 

  13. Mishina Y, Chen LX, He C. Preparation and characterization of the native iron(II)-containing DNA repair AlkB protein directly from Escherichia coli. J Am Chem Soc, 2004, 126(51): 16930–16936

    Article  CAS  Google Scholar 

  14. Huang H, Chopra R, Verdine GL, Harrison SC. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: Implications for drug resistance. Science, 1998, 282(5394): 1669–1675

    Article  CAS  Google Scholar 

  15. Verdine GL, Norman DP. Covalent trapping of protein-DNA complexes. Annu Rev Biochem, 2003, 72(337–366)

    Google Scholar 

  16. Banerjee A, Santos WL, Verdine GL. Structure of a DNA glycosylase searching for lesions. Science, 2006, 311(5764): 1153–1157

    Article  CAS  Google Scholar 

  17. Yang CG, Yi C, Duguid EM, Sullivan CT, Jian X, Rice PA, He C. Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature, 2008, 452(7190): 961–965

    Article  CAS  Google Scholar 

  18. Yi C, Chen B, Qi B, Zhang W, Jia G, Zhang L, Li CJ, Dinner AR, Yang CG, He C. Duplex interrogation by a direct DNA repair protein in search of base damage. Nat Struct Mol Biol, 2012, 19(7): 671–676

    Article  CAS  Google Scholar 

  19. Chen B, Liu H, Sun X, Yang CG. Mechanistic insight into the recognition of single-stranded and double-stranded DNA substrates by ABH2 and ABH3. Mol Biosyst, 2010, 6(11): 2143–2149

    Article  Google Scholar 

  20. Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol, 1997, 276: 307–326

    Article  CAS  Google Scholar 

  21. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr, 1994, 50(Pt 5): 760–763

    Google Scholar 

  22. Read RJ. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr D Biol Crystallogr, 2001, 57(Pt 10): 1373–1382

    Article  CAS  Google Scholar 

  23. Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr, 2004, 60(Pt 12 Pt 1): 2126–2132

    Article  Google Scholar 

  24. Yi C, Yang CG, He C. A non-heme iron-mediated chemical demethylation in DNA and RNA. Acc Chem Res, 2009, 42(4): 519–529

    Article  CAS  Google Scholar 

  25. Monsen VT, Sundheim O, Aas PA, Westbye MP, Sousa MM, Slupphaug G, Krokan HE. Divergent ss-hairpins determine double-strand versus single-strand substrate recognition of human AlkB-homologues 2 and 3. Nucleic Acids Res, 2010, 38(19): 6447–6455

    Article  CAS  Google Scholar 

  26. Blainey PC, van Oijen AM, Banerjee A, Verdine GL, Xie XS. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc Natl Acad Sci U S A, 2006, 103(15): 5752–5757

    Article  CAS  Google Scholar 

  27. Lin Y, Zhao T, Jian X, Farooqui Z, Qu X, He C, Dinner AR, Scherer NF. Using the bias from flow to elucidate single DNA repair protein sliding and interactions with DNA. Biophys J, 2009, 96(5): 1911–1917

    Article  CAS  Google Scholar 

  28. Friedman JI, Stivers JT. Detection of damaged DNA bases by DNA glycosylase enzymes. Biochemistry, 2010, 49(24): 4957–4967

    Article  CAS  Google Scholar 

  29. Blainey PC, Luo GB, Kou SC, Mangel WF, Verdine GL, Bagchi B, Xie XS. Nonspecifically bound proteins spin while diffusing along DNA. Nat Struct Mol Biol, 2009, 16(12): U1224–U1234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JianHua Gan or CaiGuang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Gan, J. & Yang, C. The complex structures of ALKBH2 mutants cross-linked to dsDNA reveal the conformational swing of β-hairpin. Sci. China Chem. 57, 307–313 (2014). https://doi.org/10.1007/s11426-013-5029-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5029-z

Keywords

Navigation